# Class 11 NCERT Solutions- Chapter 12 Introduction to three dimensional Geometry – Exercise 12.3

• Difficulty Level : Medium
• Last Updated : 09 Mar, 2021

### (i) 2: 3 internally

Solution:

By using Section formula,

Hey! Looking for some great resources suitable for young ones? You've come to the right place. Check out our self-paced courses designed for students of grades I-XII

Start with topics like Python, HTML, ML, and learn to make some games and apps all with the help of our expertly designed content! So students worry no more, because GeeksforGeeks School is now here! Upon comparing we get,

x1 = -2, y1 = 3, z1 = 5

x2 = 1, y2 = -4, z2 = 6 and

m = 2, n = 3

So, the coordinates of the point which divides the line segment joining the points P (– 2, 3, 5) and Q (1, – 4, 6) in the ratio 2 : 3 internally is given by:

((2 * 1 + 3 * -2)/(2 + 3), (2 * -4 + 3 * 3)/(2 + 3), (2 * 6 + 3 * 5)/(2 + 3))

((-4/5), (1/5), (27/5))

Hence, the coordinates of the point which divides the line segment joining the points (-2, 3, 5) and (1, -4, 6) is (-4/5, 1/5, 27/5)

### (ii) 2: 3 externally

Solution:

By using Section formula, Upon comparing we get,

x1 = -2, y1 = 3, z1 = 5;

x2 = 1, y2 = -4, z2 = 6 and

m = 2, n = 3

So, the coordinates of the point which divides the line segment joining the points P (– 2, 3, 5) and Q (1, – 4, 6) in the ratio 2: 3 externally is given by:

((2 * 1 – 3 * -2)/(2 + 3), (2 * -4 – 3 * 3)/(2 + 3), (2 * 6 – 3 * 5)/(2 + 3))

((2 + 6)/(-1), (-8 – 9)/(-1), (12 – 15)/(-1)

(-8), (17), (3)

∴ The co-ordinates of the point which divides the line segment joining the points (-2, 3, 5) and (1, -4, 6) is (-8, 17, 3).

### Problem 2: Given that P (3, 2, – 4), Q (5, 4, – 6) and R (9, 8, –10) are collinear. Find the ratio in which Q divides PR.

Solution:

Let us consider Q divides PR in the ratio k: 1.

By using Section formula, Upon comparing we get,

x1 = 3, y1 = 2, z1 = -4;

x2 = 9, y2 = 8, z2 = -10 and

m = k, n = 1

So, we have

((k * 9 + 1 * 3)/(k + 1), (k * 8 + 1 * 2)/(k + 1), (-10 * k + 1 * -4)/(k + 1) = (5, 4, -6)

(9k + 3)/(k + 1) = 5, (8k + 2)/(k + 1) = 4, (-10k + -4)/(k + 1) = -6

(8k + 2)/(k + 1) = 4

8k + 2 = 4k + 4

4k = 2

k = 1/2

Hence, the ratio in which Q divides PR is 1: 2

### Problem 3: Find the ratio in which the YZ-plane divides the line segment formed by joining the points (–2, 4, 7) and (3, –5, 8).

Solution:

Let the line segment formed by joining the points P (-2, 4, 7) and Q (3, -5, 8) be PQ.

We know that any point on the YZ-plane is of the form (0, y, z).

So now, let R (0, y, z) divides the line segment PQ in the ratio k: 1.

Then,

Upon comparing we get,

x1 = -2, y1 = 4, z1 = 7;

x2 = 3, y2 = -5, z2 = 8 and

m = k, n = 1

By using the Section formula, So we have,

((3k – 2)/(k + 1), (-5k + 4)/(k + 1), (8k + 7)/(k + 1)) = (0, y, z)

3k – 2 = 0

3k = 2

k = 2/3

Hence, the ratio in which the YZ-plane divides the line segment formed by joining the points (–2, 4, 7) and (3, –5, 8) is 2:3.

### Problem 4: Using section formula, show that the points A (2, –3, 4), B (–1, 2, 1) and C (0, 1/3, 2) are collinear.

Solution:

Let the point P divides AB in the ratio k: 1.

Upon comparing we get,

x1 = 2, y1 = -3, z1 = 4;

x2 = -1, y2 = 2, z2 = 1 and

m = k, n = 1

By using Section formula, So we have,

The coordinates of P are:

((-k + 2)/(k + 1), (2k – 3)/(k + 1), (k + 4)/(k + 1))

Now, we check if for some value of k, the point coincides with the point C.

Put (-k + 2)/(k + 1) = 0

-k + 2 = 0

k = 2

When k = 2, then (2k – 3)/(k + 1) = (2(2) – 3)/(2 + 1)

= (4 – 3)/3

= 1/3

And, (k + 4)/(k +1) = (2 + 4)/(2 +1)

= 6/3

= 2

∴ C (0, 1/3, 2) is a point which divides AB in the ratio 2: 1 and is same as P.

Hence, A, B, C are collinear.

### Problem 5: Find the coordinates of the points which trisect the line segment joining the points P (4, 2, – 6) and Q (10, –16, 6).

Solution:

Let A (x1, y1, z1) and B (x2, y2, z2) trisect the line segment joining the points P (4, 2, -6) and Q (10, -16, 6).

A divides the line segment PQ in the ratio 1: 2.

Upon comparing we get,

x1 = 4, y1 = 2, z1 = -6;

x2 = 10, y2 = -16, z2 = 6 and

m = 1, n = 2

By using the Section formula, So we have,

The coordinates of A are:

((1*10 + 2*4)/(1 + 2), (1*(-16) + 2*2)/(1 + 2), (1*6 + 2*(-6))/(1 + 2)

((18/3), (-12/3), (-6/3))

The coordinates of A are (6, -4, -2)

Similarly, we know that B divides the line segment PQ in the ratio 2: 1.

Upon comparing we get,

x1 = 4, y1 = 2, z1 = -6;

x2 = 10, y2 = -16, z2 = 6 and

m = 2, n = 1

By using the Section formula, So we have,

The coordinates of B are:

((2 * 10 + 1 * 4)/(2 + 1), (2 * -16 + 1 * 2)/(2 + 1), (2 * 6 + 1 * -6)/(2 + 1)

The coordinates of B are (8, -10, 2)

∴ The coordinates of the points which trisect the line segment joining the points P (4, 2, – 6) and Q (10, –16, 6) are (6, -4, -2) and (8, -10, 2).

My Personal Notes arrow_drop_up