Open In App

Class 11 NCERT Solutions- Chapter 12 Introduction to three dimensional Geometry – Exercise 12.1

Last Updated : 04 Jan, 2021
Improve
Improve
Like Article
Like
Save
Share
Report

Problem 1: A point is on the x-axis. What are its y coordinate and z-coordinates?

Solution:

If a point is on the x-axis, then the coordinates of y and z are 0.

So the point is (x, 0, 0)

Problem 2: A point is in the XZ-plane. What can you say about its y-coordinate?

Solution:

If a point is in XZ plane, 

So its y-coordinate is 0

Problem 3: Name the octants in which the following points lie:

(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (– 4, 2, –5), (– 4, 2, 5), (–3, –1, 6) (2, – 4, –7).

Solution:

Octants I II III IV V VI VII VIII
x + + + +
y + + + +
z + + + +

(i) (1, 2, 3)

Here x is positive, y is positive and z is positive.

So it lies in I octant.

(ii) (4, -2, 3)

Here x is positive, y is negative and z is positive.

So it lies in IV octant.

(iii) (4, -2, -5)

Here x is positive, y is negative and z is negative.

So it lies in VIII octant.

(iv) (4, 2, -5)

Here x is positive, y is positive and z is negative.

So it lies in V octant.

(v) (-4, 2, -5)

Here x is negative, y is positive and z is negative.

So it lies in VI octant.

(vi) (-4, 2, 5)

Here x is negative, y is positive and z is positive.

So it lies in II octant.

(vii) (-3, -1, 6)

Here x is negative, y is negative and z is positive.

So it lies in III octant.

(viii) (2, -4, -7)

Here x is positive, y is negative and z is negative.

So it lies in VIII octant.

Problem 4: Fill in the blanks:

(i) The x-axis and y-axis taken together determine a plane known as _______.

Solution:

The x-axis and y-axis taken together determine a plane known as XY Plane.

(ii) The coordinates of points in the XY-plane are of the form _______.

Solution:

The coordinates of points in the XY-plane are of the form (x, y, 0).

(iii) Coordinate planes divide the space into ______ octants.

Solution:

Coordinate planes divide the space into eight octants.


Previous Article
Next Article

Similar Reads

Class 11 NCERT Solutions- Chapter 12 Introduction to three dimensional Geometry - Miscellaneous Exercise on Chapter 12
Question 1: Three vertices of a parallelogram ABCD are A(3, – 1, 2), B (1, 2, – 4), and C (– 1, 1, 2). Find the coordinates of the fourth vertex. Solution: ABCD is a parallelogram, with vertices A (3, -1, 2), B (1, 2, -4), C (-1, 1, 2) and D (x, y, z). Using the property: The diagonals of a parallelogram bisect each other, Midpoint of AC = Midpoint
7 min read
Class 11 NCERT Solutions- Chapter 12 Introduction to three dimensional Geometry - Exercise 12.3
Problem 1: Find the coordinates of the point which divides the line segment joining the points (– 2, 3, 5) and (1, – 4, 6) in the ratio.(i) 2: 3 internally Solution: By using Section formula, [Tex](x, y, z) = \mathbf{(\frac{(mx_2 + nx_1)}{(m + n)}, \frac{(my_2 + ny_1)}{(m + n)}, \frac{(mz_2 + nz_1)}{(m + n)})}[/Tex] Upon comparing we get, x1 = -2,
6 min read
Class 11 NCERT Solutions- Chapter 12 Introduction to three dimensional Geometry - Exercise 12.2
Problem 1: Find the distance between the following pairs of points:(i) (2, 3, 5) and (4, 3, 1) Solution: Let P be (2, 3, 5) and Q be (4, 3, 1) Now, by using the distance formula, Length of distance PQ = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2] So here, x1 = 2, y1 = 3, z1 = 5 x2 = 4, y2 = 3, z2 = 1 Length of distance PQ = √[(4 – 2)2 + (3 – 3)2 + (1 –
14 min read
NCERT Solutions Class 11 - Chapter 11 Introduction to three dimensional Geometry - Exercise 11.2
Problem 1: Find the distance between the following pairs of points:(i) (2, 3, 5) and (4, 3, 1)Solution: Let P be (2, 3, 5) and Q be (4, 3, 1) Now, by using the distance formula, Length of distance PQ = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2] So here, x1 = 2, y1 = 3, z1 = 5 x2 = 4, y2 = 3, z2 = 1 Length of distance PQ = √[(4 – 2)2 + (3 – 3)2 + (1 –
14 min read
NCERT Solutions Class 11 - Chapter 11 Introduction to three dimensional Geometry - Miscellaneous Exercise
Question 1: Three vertices of a parallelogram ABCD are A(3, – 1, 2), B (1, 2, – 4), and C (– 1, 1, 2). Find the coordinates of the fourth vertex.Solution:  ABCD is a parallelogram, with vertices A (3, -1, 2), B (1, 2, -4), C (-1, 1, 2) and D (x, y, z). Using the property: The diagonals of a parallelogram bisect each other,  Midpoint of AC = Midpoin
4 min read
NCERT Solutions Class 11 - Chapter 11 Introduction to three dimensional Geometry - Exercise 11.1
Problem 1: A point is on the x-axis. What are its y coordinate and z-coordinates?Solution: If a point is on the x-axis, then the coordinates of y and z are 0. So the point is (x, 0, 0) Problem 2: A point is in the XZ-plane. What can you say about its y-coordinate?Solution: If a point is in XZ plane, So its y-coordinate is 0 Problem 3: Name the octa
2 min read
Class 12 NCERT Solutions- Mathematics Part II – Chapter 11 – Three Dimensional Geometry Exercise 11.1
Question 1: If a line makes angles 90°, 135°, and 45° with x, y, and z-axes respectively, find its direction cosines.Solution: Let the direction cosines of the lines be l, m, and n. l = cos 90° = 0 m = cos 135° = - 1/√2 n = cos 45° = 1/√2 Therefore , the direction cosines of the lines are 0, - 1/√2, 1/√2 Question 2: Find the direction cosines of a
3 min read
Class 12 NCERT Solutions- Mathematics Part ii – Chapter 11 – Three Dimensional Geometry Exercise 11.2
In this article, we have covered solutions to exercise 11.2 of chapter chapter 11 - Three Dimensional Geometry Exercise for class 12 Mathematics. Now let's learn the same. Question 1: Show that the three lines with direction cosines[Tex]\frac{12}{13},\frac{-3}{13},\frac{-4}{13};\frac{4}{13},\frac{12}{13},\frac{3}{13};\frac{3}{13},\frac{-4}{13},\fra
13 min read
Class 12 NCERT Solutions – Mathematics Part ii – Chapter 11 – Three Dimensional Geometry – Miscellaneous Exercise
1. Find the angle between the lines whose direction ratios are a, b, c and b – c, c – a, a – b.Solution: The angle θ between the lines with direction cosines a, b, c and b – c, c – a, a – b is given by: [Tex]cosθ=|\frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^2+b^2+c^2}.\sqrt{(b-c)^2+(c-a)^2+(a-b)^2}}|\\ θ=cos^{-1}|\frac{ab-ac+bc-ab+ac-bc}{\sqrt{a^2+b^2+c^2}
2 min read
Class 9 NCERT Solutions- Chapter 5 Introduction to Euclid's Geometry - Exercise 5.1
Question 1: Which of the following statements are true and which are false? Give reasons for your answers. (i) Only one line can pass through a single point. (ii) There is an infinite number of lines which pass through two distinct points. (iii) A terminated line can be produced indefinitely on both the sides. (iv) If two circles are equal, then th
7 min read