Skip to content
Related Articles

Related Articles

Improve Article

Class 10 RD Sharma Solutions – Chapter 7 Statistics – Exercise 7.2

  • Difficulty Level : Easy
  • Last Updated : 21 Dec, 2020
Geek Week

Question1: The number of telephone calls received at an exchange per interval for 250 successive one-minute intervals are given in the following frequency table:

Number of calls (x)

0

1

2

3



4

5

6

Number of intervals (f)     

15

24

29

46



54

43

39

Compute the mean number of calls per interval.

Solution: 

Let the assumed mean(A) be =3 (Generally we choose the middle element to be the assumed mean, but it’s not mandatory),

hence, the table is,
 

Number of calls (x_i)

Number of intervals (f_i)

u_{i}=x_{i}-A=x_{i}-3

f_{i}*u_{i}

0



15

-3

-45

1

24

-2

-48

2

29

-1

-29

3

46

0

0

4

54

1

54

5

43

2

86

6

39

3

117

 

\displaystyle\sum_{}^{} f_{i}=250

 

\displaystyle\sum_{}^{} f_{i}*u_{i}=135



hence, mean of the calls = A+\frac{\displaystyle\sum_{}^{} f_{i}*u_{i}}{\displaystyle\sum_{}^{} f_{i}}

                                        = 3+\frac{135}{250}

                                        = 3.54

Therefore, mean number of calls per interval is 3.54

Question 2: Five coins were simultaneously tossed 1000 times, and at each toss the number of heads was observed. The number of tosses during which 0, 1, 2, 3, 4, and 5 heads were obtained are shown in the table below. Find the mean number of heads per toss.

Number of heads per toss (x)      

0

1

2

3

4



5

Number of tosses (f)

38

144

342

287

164

25

Solution:

Let the assumed mean (A) be = 2

hence, the table is,

Number of heads per toss (x_i)

Number of tosses (f_i)

u_{i}=x_{i}-A=x_{i}-2

f_{i}*u_{i}

0

38

-2

-76

1



144

-1

-144

2

342

0

0

3

287

1

287

4

164

2

328

5

25

3

75

 

\displaystyle\sum_{}^{} f_{i}=1000

 

\displaystyle\sum_{}^{} f_{i}*u_{i}=470

Mean number of head per toss = A+\frac{\displaystyle\sum_{}^{} f_{i}*u_{i}}{\displaystyle\sum_{}^{} f_{i}}

                                                   = 2+\frac{470}{1000}

                                                   = 2.47

Therefore, mean number of head per toss is 2.47

Question 3: The following table gives the number of branches and number of plants in the garden of a school.

Number of branches (x)

2

3



4

5

6

Number of plants (f)

49

43

57

38

13

Calculate the average number of branches per plant.

Solution:

Let the assumed mean(A) be = 4

hence, the table is,

Number of branches (x_i)

Number of plants (f_i)

u_{i}=x_{i}-A=x_{i}-4

f_{i}*u_{i}

2

49

-2

-98

3

43

-1

-43

4

57

0

0

5

38



1

38

6

13

2

26

 

\displaystyle\sum_{}^{} f_{i}=200

 

\displaystyle\sum_{}^{} f_{i}*u_{i}=-77

Average Number of branches per plant = A+\frac{\displaystyle\sum_{}^{} f_{i}*u_{i}}{\displaystyle\sum_{}^{} f_{i}}

                                                                = 2+(\frac{-77}{200})

                                                                = 3.615

Therefore, mean number of branches per plant is 3.615

Question 4: The following table gives the number of children of 150 families in a village

Number of children (x)

0

1

2

3

4



5

Number of families (f)

10

21

55

42

15

7

Find the average number of children per family.

Solution:

Let the assumed mean(A) be = 2

Hence, the table is,

Number of children (x_i)

Number of families (f_i)

u_{i}=x_{i}-A=x_{i}-2

f_{i}*u_{i}

0

10

-2

-20

1

21

-1

-21

2

55

0

0

3

42

1

42

4

15

2

30

5

7

3

21

 

\displaystyle\sum_{}^{} f_{i}=150

 

\displaystyle\sum_{}^{} f_{i}*u_{i}=52

Average number of children per family = A+\frac{\displaystyle\sum_{}^{} f_{i}*u_{i}}{\displaystyle\sum_{}^{} f_{i}}

                                                               = 2+(\frac{52}{150})

                                                               = 2.35 (approximately)

Therefore, the average number of children per family is 2.35 (approximately)

Question 5: The marks obtained out of 50, by 102 students in a Physics test are given in the frequency table below:

Marks (x)

15

20



22

24

25

30

33

38

45

Frequency (f)

5

8

11

20

23

18

13

3

1

Find the average number of marks.

Solution:

Let the assume mean (A) be = 25

hence, the table is,

Marks (x_i)

Frequency (f_i)

u_{i}=x_{i}-A=x_{i}-25

f_{i}*u_{i}

15

5

-10

-50

20

8

-5

-40

22

11

-3

-33

24

20

-1

-20

25

23

0

0

30

18

5

90

33

13

8

104

38

3

13

39

45

1

20

20



 

\displaystyle\sum_{}^{} f_{i}=102

 

\displaystyle\sum_{}^{} f_{i}*u_{i}=110

Average number of marks =  A+\frac{\displaystyle\sum_{}^{} f_{i}*u_{i}}{\displaystyle\sum_{}^{} f_{i}}

                                           = 25+(\frac{102}{110})

                                           = 26.08 (approximately)

Therefore, average number of marks is 26.08 (approximately)

Question 6: The number of students absent in a class was recorded every day for 120 days and the information is given in the following

Number of students absent (x)

0

1

2

3

4

5

6

7

Number of Days (f)

1

4

10

50

34

15

4

2

Find the mean number of students absent per day.

Solution:

Let mean assumed mean (A) be = 3

Number of students absent (x_i)

Number of Days (f)



u_{i}=x_{i}-A=x_{i}-3

f_{i}*u_{i}

0

1

-3

-3

1

4

-2

-8

2

10

-1

-10

3

50

0

0

4

34

1

34

5

15

2

30

6

4

3

12

7

2

4

8

 

\displaystyle\sum_{}^{} f_{i}=120

 

\displaystyle\sum_{}^{} f_{i}*u_{i}=63

Mean number of students absent per day = A+\frac{\displaystyle\sum_{}^{} f_{i}*u_{i}}{\displaystyle\sum_{}^{} f_{i}}

                                                                    = 3+(\frac{63}{120})

                                                                    = 3.525

Therefore, the mean number of students absent per day is 3.525

Question 7: In the first proof of reading of a book containing 300 pages the following distribution of misprints was obtained:

Number of misprints per page (x)

0

1

2

3

4

5

Number of page (f)



154

95

36

9

5

1

Find the average number of misprints per page.

Solution:

Let the assumed mean (A) be = 2

Number of misprints per page (x_i)

Number of page (f_i)

u_{i}=x_{i}-A=x_{i}-2

f_{i}*u_{i}

0

154

-2

-308

1

95

-1

-95

2

36

0

0

3

9

1

9

4

5

2

10

5

1

3

3

 

\displaystyle\sum_{}^{} f_{i}=300

 

\displaystyle\sum_{}^{} f_{i}*u_{i}=-381

Average number of misprints per day = A+\frac{\displaystyle\sum_{}^{} f_{i}*u_{i}}{\displaystyle\sum_{}^{} f_{i}}

                                                             = 2+(\frac{-381}{300})

                                                             = 0.73

Therefore, the average number of misprints per day is 0.73

Question 8: Find the mean from the following frequency distribution of marks at a test in statistics:

Number of accidents (x)

0

1

2

3

4



Number of workers (f)

70

52

34

3

1

Find the average number of misprints per page.

Solution:

Let the assumed mean (A) = 2

Number of accidents (x_i)

Number of workers (f_i)

u_{i}=x_{i}-A=x_{i}-2

f_{i}*u_{i}

0

70

-2

-140

1

52

-1

-52

2

34

0

0

3

3

1

3

4

1

2

2

 

\displaystyle\sum_{}^{} f_{i}=100

 

\displaystyle\sum_{}^{} f_{i}*u_{i}=-187

Average no of accidents per day workers = A+\frac{\displaystyle\sum_{}^{} f_{i}*u_{i}}{\displaystyle\sum_{}^{} f_{i}}

                                                                  = 2+(\frac{-187}{100})

                                                                  = 0.83

Therefore, average no of accidents per day workers 0.83

Question 9: Find the mean from the following frequency distribution of marks at a test in statistics:

Marks (x)

5

10

15

20

25

30

35

40

45



50

Number of students (f)

15

50

80

76

72

45

39

9

8

6

Solution:

Let the assumed mean (A) be = 25

Marks (x_i)

Number of students (f_i)

u_{i}=x_{i}-A=x_{i}-25

f_{i}*u_{i}

5

15

-20

-300

10

50

-15

-750

15

80

-10

-800

20

76

-5

-380

25

72

0

0

30

45

5

225

35

39

10

390

40

9

15

135

45

8

20

160

50

6

25

150

 

\displaystyle\sum_{}^{} f_{i}=400

 

\displaystyle\sum_{}^{} f_{i}*u_{i}=-1170

Mean = A+\frac{\displaystyle\sum_{}^{} f_{i}*u_{i}}{\displaystyle\sum_{}^{} f_{i}}

          = 25+(\frac{-1170}{400})

          = 22.075

Therefore, the mean is 22.075

Attention reader! All those who say programming isn’t for kids, just haven’t met the right mentors yet. Join the  Demo Class for First Step to Coding Course, specifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.




My Personal Notes arrow_drop_up
Recommended Articles
Page :