Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Class 10 RD Sharma Solutions – Chapter 15 Areas Related to Circles – Exercise 15.2

  • Last Updated : 03 May, 2021

Question 1. Find, in terms of π, the length of the arc that subtends an angle of 30o at the centre of a circle of radius of 4 cm. 

Solution:

Given,

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

Radius = 4 cm



Angle subtended at the centre = 30°

Length of arc = θ/360 × 2πr 

Length of arc = 30/360 × 2π × 4 cm 

                      = 2π/3 

Therefore, the length of arc that subtends an angle of 30o degree is 2π/3 cm

Question 2. Find the angle subtended at the centre of a circle of radius 5 cm by an arc of length 5π/3 cm. 

Solution:

Length of arc = 5π/3 cm

Length of arc = θ/360 × 2πr cm



5π/3 cm = θ/360 × 2πr cm

θ = 60°

Therefore, the angle subtended at the centre of circle is 60°

Question 3. An arc of length 20π cm subtends an angle of 144° at the centre of a circle. Find the radius of the circle.

Solution:

Length of arc = 20π cm

θ = Angle subtended at the centre of circle = 144°

Length of arc = θ/360 × 2πr cm

θ/360 × 2πr cm = 144/360 × 2πr cm = 4π/5 × r cm

20π cm = 4π/5 × r cm

r = 25 cm.

Therefore, the radius of the circle is 25 cm.

Question 4. An arc of length 15 cm subtends an angle of 45° at the centre of a circle. Find in terms of π, the radius of the circle. 

Solution:

Length of arc = 15 cm

θ = Angle subtended at the centre of circle = 45°

Length of arc = θ/360 × 2πr cm

                = 45/360 × 2πr cm

15 cm = 45/360 × 2π × r cm

15 = πr/4

Radius = 15×4/ π = 60/π

Therefore, the radius of the circle is 60/π cm.



Question 5. Find the angle subtended at the centre of a circle of radius ‘a’ cm by an arc of length (aπ/4) cm. 

Solution:

Radius = a cm

Length of arc = aπ/4 cm

θ = angle subtended at the centre of circle

Length of arc = θ/360 × 2πr cm

θ/360 × 2πa cm = aπ/4 cm

θ = 360/ (2 x 4)

θ = 45°

Therefore, the angle subtended at the centre of circle is 45°

Question 6. A sector of a circle of radius 4 cm subtends an angle of 30°. Find the area of the sector. 

Solution:

Radius = 4 cm

Angle subtended at the centre O = 30°

Area of the sector = θ/360 × πr2

                             = 30/360 × π42 

                             = 1/12 × π16 

                             = 4π/3 cm

                             = 4.19 cm

Therefore, the area of the sector of the circle = 4.19 cm

Question 7. A sector of a circle of radius 8 cm contains an angle of 135o. Find the area of sector. 

Solution:

Radius = 8 cm



Angle subtended at the centre O = 135°

Area of the sector = θ/360 × πr2

Area of the sector = 135/360 × π82

                             = 24π cm2

                                       = 75.42 cm2

Therefore, area of the sector calculated = 75.42 cm2

Question 8. The area of a sector of a circle of radius 2 cm is π cm2. Find the angle contained by the sector. 

Solution:

Radius = 2 cm

Area of sector of circle = π cm2

Area of the sector = θ/360 × πr2

                             = θ/360 × π22

                            = πθ/90

π  = π θ/90

θ = 90°

Therefore, the angle subtended at the centre of circle is 90°

Question 9. The area of a sector of a circle of radius 5 cm is 5π cm2. Find the angle contained by the sector. 

Solution:

Radius = 5 cm

Area of sector of circle = 5π cm2

Area of the sector = θ/360 × πr2

                             = θ/360 × π52



                             = 5πθ/72

5π  = 5πθ/72

θ = 72°

Therefore, the angle subtended at the centre of circle is 72°

Question 10. Find the area of the sector of a circle of radius 5 cm, if the corresponding arc length is 3.5 cm.

Solution:

Radius = 5 cm

Length of arc = 3.5 cm

Length of arc = θ/360 × 2πr cm

                     = θ/360 × 2π(5)

3.5 = θ/360 × 2π(5)

3.5 = 10π × θ/360

θ = 360 x 3.5/ (10π)

θ = 126/ π

Area of the sector = θ/360 × πr2

                             = (126/ π)/ 360 × π(5)2

                             = 126 x 25 / 360 

                             = 8.75

Therefore, the area of the sector = 8.75 cm2

Question 11. In a circle of radius 35 cm, an arc subtends an angle of 72° at the centre. Find the length of the arc and area of the sector. 

Solution:

Radius = 35 cm

Angle subtended at the centre = 72°

Length of arc = θ/360 × 2πr cm

                      = 72/360 × 2π(35)

                      = 14π 

                      = 14(22/7) 

                      = 44 cm

Area of the sector = θ/360 × πr2

                              = 72/360 × π 352

                              = (0.2) x (22/7) x 35 × 35

                             = 0.2 × 22 × 5 × 35



Area of the sector = (35 × 22) = 770 cm2

Length of arc = 44cm

Question 12. The perimeter of a sector of a circle of radius 5.7 m is 27.2 m. Find the area of the sector. 

Solution:

Perimeter of sector includes length of arc and two radii

Radius = 5.7 cm = OA = OB

Perimeter of the sector = 27.2 m

Length of arc = θ/360 × 2πr m

Perimeter = l + 2r

Perimeter of the sector = θ/360 × 2πr + OA + OB

27.2 = θ/360 × 2π x 5.7 cm + 5.7 + 5.7

27.2 – 11.4 = θ/360 × 2π x 5.7

15.8 = θ/360 × 2π x 5.7

θ = 158.8°

Area of the sector = θ/360 × πr2

Area of the sector = 158.8/360 × π 5.72

Area of the sector = 45.03 m2

Question 13. The perimeter of a certain sector of a circle of radius is 5.6 m and 27.2 m. Find the area of the sector.

Solution:

Radius of the circle = 5.6 m = OA = OB

Perimeter of the sector = Perimeter = l + 2r = 27.2

Length of arc = θ/360 × 2πr cm

θ/360 × 2πr cm + OA + OB = 27.2 m

θ/360 × 2πr cm + 5.6 + 5.6 = 27.2 m

θ = 163.64°

Area of the sector = θ/360 × πr2

Area of the sector = 163.64/360 × π 5.62 

                             = 44.8

Therefore, the area of the sector = 44.8 m2




My Personal Notes arrow_drop_up
Recommended Articles
Page :