# Choose X such that (A xor X) + (B xor X) is minimized

• Last Updated : 26 Nov, 2021

Given two integers A and B. The task is to choose an integer X such that (A xor X) + (B xor X) is the minimum possible.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: A = 2, B = 3
Output: X = 2, Sum = 1

Input: A = 7, B = 8
Output: X = 0, Sum = 15

A simple solution is to generate all possible sum by taking xor of A and B with all possible values of X ≤ min(A, B). To generate all possible sums it would take O(N) time where N = min(A, B)

An efficient solution is based on the fact that the number X will contain the set bits only at that index where both A and B contain a set bit such that after xor operation with X that bit will be unset. This would take only O(Log N) time.
Other cases: If at a particular index one or both the numbers contain 0 (unset bit) and the number X contains 1 (set bit) then 0 will be set after xor with X in A and B then the sum couldn’t be minimized.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the integer X such that``// (A xor X) + (B ^ X) is minimized``int` `findX(``int` `A, ``int` `B)``{``    ``int` `j = 0, x = 0;` `    ``// While either A or B is non-zero``    ``while` `(A || B) {` `        ``// Position at which both A and B``        ``// have a set bit``        ``if` `((A & 1) && (B & 1)) {` `            ``// Inserting a set bit in x``            ``x += (1 << j);``        ``}` `        ``// Right shifting both numbers to``        ``// traverse all the bits``        ``A >>= 1;``        ``B >>= 1;``        ``j += 1;``    ``}``    ``return` `x;``}` `// Driver code``int` `main()``{``    ``int` `A = 2, B = 3;``    ``int` `X = findX(A, B);` `    ``cout << ``"X = "` `<< X << ``", Sum = "` `<< (A ^ X) + (B ^ X);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``class` `GFG {` `    ``// Function to return the integer X such that``    ``// (A xor X) + (B ^ X) is minimized``    ``static` `int` `findX(``int` `A, ``int` `B)``    ``{``        ``int` `j = ``0``, x = ``0``;` `        ``// While either A or B is non-zero``        ``while` `(A != ``0` `|| B != ``0``) {` `            ``// Position at which both A and B``            ``// have a set bit``            ``if` `((A % ``2` `== ``1``) && (B % ``2` `== ``1``)) {` `                ``// Inserting a set bit in x``                ``x += (``1` `<< j);``            ``}` `            ``// Right shifting both numbers to``            ``// traverse all the bits``            ``A >>= ``1``;``            ``B >>= ``1``;``            ``j += ``1``;``        ``}``        ``return` `x;``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `A = ``2``, B = ``3``;``        ``int` `X = findX(A, B);` `        ``System.out.println(``            ``"X = "` `+ X + ``", Sum = "` `+ ((A ^ X) + (B ^ X)));``    ``}``}` `// This code has been contributed by 29AjayKumar`

## Python3

 `# Python 3 implementation of the approach` `# Function to return the integer X such that``# (A xor X) + (B ^ X) is minimized`  `def` `findX(A, B):``    ``j ``=` `0``    ``x ``=` `0` `    ``# While either A or B is non-zero``    ``while` `(A ``or` `B):` `        ``# Position at which both A and B``        ``# have a set bit``        ``if` `((A & ``1``) ``and` `(B & ``1``)):` `            ``# Inserting a set bit in x``            ``x ``+``=` `(``1` `<< j)` `        ``# Right shifting both numbers to``        ``# traverse all the bits``        ``A >>``=` `1``        ``B >>``=` `1``        ``j ``+``=` `1``    ``return` `x`  `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ``A ``=` `2``    ``B ``=` `3``    ``X ``=` `findX(A, B)` `    ``print``(``"X ="``, X, ``", Sum ="``, (A ^ X) ``+` `(B ^ X))` `# This code is contributed by``# Surendra_Gangwar`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG {` `    ``// Function to return the integer X such that``    ``// (A xor X) + (B ^ X) is minimized``    ``static` `int` `findX(``int` `A, ``int` `B)``    ``{``        ``int` `j = 0, x = 0;` `        ``// While either A or B is non-zero``        ``while` `(A != 0 || B != 0) {` `            ``// Position at which both A and B``            ``// have a set bit``            ``if` `((A % 2 == 1) && (B % 2 == 1)) {` `                ``// Inserting a set bit in x``                ``x += (1 << j);``            ``}` `            ``// Right shifting both numbers to``            ``// traverse all the bits``            ``A >>= 1;``            ``B >>= 1;``            ``j += 1;``        ``}``        ``return` `x;``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main(String[] args)``    ``{``        ``int` `A = 2, B = 3;``        ``int` `X = findX(A, B);` `        ``Console.WriteLine(``            ``"X = "` `+ X + ``", Sum = "` `+ ((A ^ X) + (B ^ X)));``    ``}``}` `// This code has been contributed by 29AjayKumar`

## PHP

 `>= 1;``        ``\$B` `>>= 1;``        ``\$j` `+= 1;``    ``}``    ``return` `\$x``;``}` `// Driver code``    ``\$A` `= 2;``    ``\$B` `= 3;``    ``\$X` `= findX(``\$A``, ``\$B``);` `    ``echo` `"X = "` `, ``\$X` `, ``", Sum = "``,``        ``(``\$A` `^ ``\$X``) + (``\$B` `^ ``\$X``);` `// This code is contributed by ajit.``?>`

## Javascript

 ``
Output
`X = 2, Sum = 1`

Time Complexity: O(log(max(A, B)))

Auxiliary Space: O(1)

Most Efficient Approach:

Using the idea that X will contain only the set bits as A and B,  X = A & B. On replacing X, the above equation becomes (A ^ (A & B)) + (B ^ (A & B)) which further equates to A^B

```Proof:
Given (A ^ X) + (B ^ X)
Taking X = (A & B), we have
(A ^ (A & B)) + (B ^ (A & B))
(using x ^ y = x'y + y'x )
= (A'(A & B) + A(A & B)') + (B'(A & B) + B(A & B)')
(using (x & y)' = x' + y')
= (A'(A & B) + A(A' + B')) + (B'(A & B) + B(A' + B'))
(A'(A & B) = A'A & A'B = 0, B'(A & B)
= B'A & B'B = 0)
= (A(A' + B')) + (B(A' + B'))
= (AA' + AB') + (BA' + BB')
(using xx' = x'x = 0)
= (AB') + (BA')
= (A ^ B)```

Below is the implementation of the above approach:

## C++

 `// c++ implementation of above approach``#include ``using` `namespace` `std;` `// finding X``int` `findX(``int` `A, ``int` `B) {``  ``return` `A & B;``}` `// finding Sum``int` `findSum(``int` `A, ``int` `B) {``  ``return` `A ^ B;``}` `// Driver code``int` `main()``{``    ``int` `A = 2, B = 3;``    ``cout << ``"X = "` `<< findX(A, B)``         ``<< ``", Sum = "` `<< findSum(A, B);``    ``return` `0;``}` `// This code is contributed by yashbeersingh42`

## Java

 `// Java implementation of above approach``import` `java.io.*;` `class` `GFG``{``    ``// finding X``    ``public` `static` `int` `findX(``int` `A, ``int` `B)``    ``{``      ``return` `A & B;``    ``}` `    ``// finding Sum``    ``public` `static` `int` `findSum(``int` `A, ``int` `B)``    ``{``        ``return` `A ^ B;``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `A = ``2``, B = ``3``;``        ``System.out.print(``"X = "` `+ findX(A, B)``                         ``+ ``", Sum = "` `+ findSum(A, B));``    ``}``}``// This code is contributed by yashbeersingh42`

## Python3

 `# Python3 implementation of above approach` `# finding X``def` `findX(A, B):``    ``return` `A & B` `# finding Sum``def` `findSum(A, B):``    ``return` `A ^ B` `# Driver code``A, B ``=` `2``, ``3``print``(``"X ="``, findX(A, B) , ``", Sum ="` `, findSum(A, B))` `# This code is contributed by divyeshrabadiya07`

## C#

 `// C# implementation of above approach``using` `System;` `class` `GFG{``    ` `// Finding X``public` `static` `int` `findX(``int` `A, ``int` `B)``{``    ``return` `A & B;``}` `// Finding Sum``public` `static` `int` `findSum(``int` `A, ``int` `B)``{``    ``return` `A ^ B;``}` `// Driver Code``public` `static` `void` `Main(String[] args)``{``    ``int` `A = 2, B = 3;``    ` `    ``Console.Write(``"X = "` `+ findX(A, B) +``                  ``", Sum = "` `+ findSum(A, B));``}``}` `// This code is contributed by Princi Singh`

## Javascript

 ``
Output
`X = 2, Sum = 1`

Time Complexity: O(1)

Auxiliary Space: O(1)

My Personal Notes arrow_drop_up