Given two arrays **A[]** and **B[]**, the task is to choose two elements **X** and **Y** such that **X** belongs to **A[]** and **Y** belongs to **B[]** and **(X + Y)** must not be present in any of the array.**Examples:**

Input:A[] = {3, 2, 2}, B[] = {1, 5, 7, 7, 9}Output:3 9

3 + 9 = 12 and 12 is not present in

any of the given arrays.Input:A[] = {1, 3, 5, 7}, B[] = {7, 5, 3, 1}Output:7 7

**Approach:** Choose **X** as the maximum element from **A[]** and **Y** as the maximum element from **B[]**. Now, it is obvious that **(X + Y)** will be greater than the maximum of both the arrays i.e. it will not be present in any og the arrays.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find the numbers from` `// the given arrays such that their` `// sum is not present in any` `// of the given array` `void` `findNum(` `int` `a[], ` `int` `n, ` `int` `b[], ` `int` `m)` `{` ` ` `// Find the maximum element` ` ` `// from both the arrays` ` ` `int` `x = *max_element(a, a + n);` ` ` `int` `y = *max_element(b, b + m);` ` ` `cout << x << ` `" "` `<< y;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `a[] = { 3, 2, 2 };` ` ` `int` `n = ` `sizeof` `(a) / ` `sizeof` `(` `int` `);` ` ` `int` `b[] = { 1, 5, 7, 7, 9 };` ` ` `int` `m = ` `sizeof` `(b) / ` `sizeof` `(` `int` `);` ` ` `findNum(a, n, b, m);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach` `class` `GFG` `{` ` ` `// find maximum element in an array` `static` `int` `max_element(` `int` `a[], ` `int` `n)` `{` ` ` `int` `m = Integer.MIN_VALUE;` ` ` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++)` ` ` `m = Math.max(m, a[i]);` ` ` ` ` `return` `m;` `}` `// Function to find the numbers from` `// the given arrays such that their` `// sum is not present in any` `// of the given array` `static` `void` `findNum(` `int` `a[], ` `int` `n,` ` ` `int` `b[], ` `int` `m)` `{` ` ` `// Find the maximum element` ` ` `// from both the arrays` ` ` `int` `x = max_element(a, n);` ` ` `int` `y = max_element(b, m);` ` ` `System.out.print(x + ` `" "` `+ y);` `}` `// Driver code` `public` `static` `void` `main(String args[])` `{` ` ` `int` `a[] = { ` `3` `, ` `2` `, ` `2` `};` ` ` `int` `n = a.length;` ` ` `int` `b[] = { ` `1` `, ` `5` `, ` `7` `, ` `7` `, ` `9` `};` ` ` `int` `m = b.length;` ` ` `findNum(a, n, b, m);` `}` `}` `// This code is contributed by Arnub Kundu` |

## Python3

`# Python3 implementation of the approach` `# Function to find the numbers from` `# the given arrays such that their` `# sum is not present in any` `# of the given array` `def` `findNum(a, n, b, m) :` ` ` `# Find the maximum element` ` ` `# from both the arrays` ` ` `x ` `=` `max` `(a);` ` ` `y ` `=` `max` `(b);` ` ` `print` `(x, y);` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `a ` `=` `[ ` `3` `, ` `2` `, ` `2` `];` ` ` `n ` `=` `len` `(a);` ` ` ` ` `b ` `=` `[ ` `1` `, ` `5` `, ` `7` `, ` `7` `, ` `9` `];` ` ` `m ` `=` `len` `(b);` ` ` `findNum(a, n, b, m);` `# This code is contributed by AnkitRai01` |

## C#

`// C# implementation of the approach` `using` `System;` `class` `GFG` `{` ` ` ` ` `// find maximum element in an array` ` ` `static` `int` `max_element(` `int` `[]a, ` `int` `n)` ` ` `{` ` ` `int` `m = ` `int` `.MinValue;` ` ` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `m = Math.Max(m, a[i]);` ` ` ` ` `return` `m;` ` ` `}` ` ` ` ` `// Function to find the numbers from` ` ` `// the given arrays such that their` ` ` `// sum is not present in any` ` ` `// of the given array` ` ` `static` `void` `findNum(` `int` `[]a, ` `int` `n,` ` ` `int` `[]b, ` `int` `m)` ` ` `{` ` ` `// Find the maximum element` ` ` `// from both the arrays` ` ` `int` `x = max_element(a, n);` ` ` `int` `y = max_element(b, m);` ` ` `Console.Write(x + ` `" "` `+ y);` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `Main()` ` ` `{` ` ` `int` `[]a = { 3, 2, 2 };` ` ` `int` `n = a.Length;` ` ` `int` `[]b = { 1, 5, 7, 7, 9 };` ` ` `int` `m = b.Length;` ` ` ` ` `findNum(a, n, b, m);` ` ` `}` `}` `// This code is contributed by kanugargng` |

## Javascript

`<script>` `// Javascript implementation of the approach` `// Function to find the numbers from` `// the given arrays such that their` `// sum is not present in any` `// of the given array` `function` `findNum(a, n, b, m)` `{` ` ` `// Find the maximum element` ` ` `// from both the arrays` ` ` `var` `x = a.reduce(` `function` `(a, b) { ` `return` `Math.max(a, b); });` ` ` `var` `y = b.reduce(` `function` `(a, b) { ` `return` `Math.max(a, b); });` ` ` `document.write(x + ` `" "` `+ y);` `}` `// Driver code` `var` `a = [ 3, 2, 2 ];` `var` `n = a.length;` `var` `b = [ 1, 5, 7, 7, 9 ]` `var` `m = b.length;` `findNum(a, n, b, m);` `// This code is contributed by rutvik_56.` `</script>` |

**Output:**

3 9

**Time Complexity:** O(n)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.