# Choose points from two ranges such that no point lies in both the ranges

Given two segments [L1, R1] and [L2, R2], the task is to choose two elements x and y from both the ranges (one from range one and other from range two) such that no element belongs to both the ranges i.e. x belongs to first range and y belongs to second range. If no such element exists then print -1 instead.

Examples:

Input: L1 = 1, R1 = 6, L2 = 3, R2 = 11
Output: 1 11
1 lies only in range [1, 6] and 11 lies only in [3, 11]

Input: L1 = 5, R1 = 10, L2 = 1, R2 = 7
Output: 1 10

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

• If L1 != L2 and R1 != R2 then the points will be min(L1, L2) and max(R1, R2).
• Else only one point can be chosen from one of the ranges as one of the range is completely inside the other so we print -1 for that point.

Below is the implementation of the above approach:

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find the required points ` `void` `findPoints(``int` `l1, ``int` `r1, ``int` `l2, ``int` `r2) ` `{ ` ` `  `    ``int` `x = (l1 != l2) ? min(l1, l2) : -1; ` `    ``int` `y = (r1 != r2) ? max(r1, r2) : -1; ` `    ``cout << x << ``" "` `<< y; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `l1 = 5, r1 = 10, l2 = 1, r2 = 7; ` `    ``findPoints(l1, r1, l2, r2); ` `} `

 `// Java implementation of the approach ` `class` `GFG ` `{ ` `     `  `// Function to find the required points ` `static` `void` `findPoints(``int` `l1, ``int` `r1,  ` `                       ``int` `l2, ``int` `r2) ` `{ ` ` `  `    ``int` `x = (l1 != l2) ? Math.min(l1, l2) : -``1``; ` `    ``int` `y = (r1 != r2) ? Math.max(r1, r2) : -``1``; ` `    ``System.out.println(x + ``" "` `+ y); ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `l1 = ``5``, r1 = ``10``, l2 = ``1``, r2 = ``7``; ` `    ``findPoints(l1, r1, l2, r2); ` `} ` `} ` ` `  `// This code is contributed by Code_Mech `

 `# Python3 implementation of the approach ` ` `  `# Function to find the required points ` `def` `findPoints(l1, r1, l2, r2): ` ` `  `    ``x ``=` `min``(l1, l2) ``if``(l1 !``=` `l2) ``else` `-``1` `    ``y ``=` `max``(r1, r2) ``if``(r1 !``=` `r2) ``else` `-``1` `    ``print``(x, y) ` ` `  `# Driver code ` `if` `__name__ ``=``=` `"__main__"``: ` `     `  `    ``l1 ``=` `5` `    ``r1 ``=` `10` `    ``l2 ``=` `1` `    ``r2 ``=` `7` `    ``findPoints(l1, r1, l2, r2) ` ` `  `# This code is contributed by ita_c `

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG ` `{ ` `    ``// Function to find the required points ` `    ``static` `void` `findPoints(``int` `l1, ``int` `r1, ` `                            ``int` `l2, ``int` `r2) ` `    ``{ ` `        ``int` `x = (l1 != l2) ? Math.Min(l1, l2) : -1; ` `        ``int` `y = (r1 != r2) ? Math.Max(r1, r2) : -1; ` `        ``Console.WriteLine(x + ``" "` `+ y); ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `l1 = 5, r1 = 10, l2 = 1, r2 = 7; ` `        ``findPoints(l1, r1, l2, r2); ` `    ``} ` `} ` ` `  `// This code is contributed by Ryuga `

 ` `

Output:
```1 10
```

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :