Check whether given three numbers are adjacent primes

Given three numbers and check whether they are adjacent primes are not. Three prime numbers are said to be adjacent primes if there is no prime between them.

Examples :

Input : 2, 3, 5
Output : Yes
Explanation: 2, 3, 5 are adjacent primes.

Input : 11, 13, 19
Output : No
Explanation: 11, 13, 19 are not adjacent primes.
Because there exits 17 between 13 and 19 which
is prime.

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:
We already know what is a prime number. Here we need to check weather given three numbers are adjacent primes or not. First we check given three numbers are prime or not. After that we will find next prime of first number and second number. If satisfies the condition of adjacent primes then it is clear that given three numbers are adjacent primes otherwise not.

C++

 // CPP program to check given three numbers are // primes are not.    #include using namespace std;    // checks weather given number is prime or not. bool isPrime(int n) {     // check if n is a multiple of 2     if (n % 2 == 0)         return false;        // if not, then just check the odds     for (int i = 3; i * i <= n; i += 2)          if (n % i == 0)             return false;         return true; }    // return next prime number int nextPrime(int start) {     // start with next number.     int next = start + 1;        // breaks after finding next prime number     while (!isPrime(next))         next++;        return next; }    // check given three numbers are adjacent primes are not. bool areAdjacentPrimes(int a, int b, int c) {     // check given three numbers are primes are not.     if (!isPrime(a) || !isPrime(b) || !isPrime(c))         return false;        // find next prime of a     int next = nextPrime(a);        // If next is not same as 'a'     if (next != b)         return false;        // If next next is not same as 'c'     if (nextPrime(b) != c)         return false;        return true; }    // Driver code for above functions int main() {     if (areAdjacentPrimes(11, 13, 19))         cout << "Yes";     else         cout << "No";        return 0; }

Java

 // Java program to check given three numbers are // primes are not.    import java.io.*; import java.util.*;    class GFG {     public static boolean isPrime(int n)     {         // check if n is a multiple of 2         if (n % 2 == 0)             return false;            // if not, then just check the odds         for (int i = 3; i * i <= n; i += 2)             if (n % i == 0)                 return false;         return true;     }        // return next prime number     public static int nextPrime(int start)     {         // start with next number.         int next = start + 1;            // breaks after finding next prime number         while (!isPrime(next))             next++;            return next;     }        // check given three numbers are adjacent primes are not.     public static boolean areAdjacentPrimes(int a, int b, int c)     {         // check given three numbers are primes are not.         if (!isPrime(a) || !isPrime(b) || !isPrime(c))             return false;            // find next prime of a         int next = nextPrime(a);            // If next is not same as 'a'         if (next != b)             return false;            // If next next is not same as 'c'         if (nextPrime(b) != c)             return false;            return true;     }        // Driver code for above functions     public static void main (String[] args)     {         if (areAdjacentPrimes(11, 13, 19))             System.out.print("Yes");         else             System.out.print("No");     } } // Mohit Gupta_OMG <(o_0)>

Python

 # Python3 program to check given   # three numbers are primes are not.    # Function checks whether given number is prime or not. def isPrime(n) :     # Check if n is a multiple of 2     if (n % 2 == 0) :         return False        # If not, then just check the odds     i = 3     while( i*i <= n) :         if (n % i == 0) :             return False         i = i + 2     return True           # Return next prime number def nextPrime(start) :     # Start with next number     nxt = start + 1            # Breaks after finding next prime number     while (isPrime(nxt) == False) :         nxt = nxt + 1        return nxt       # Check given three numbers # are adjacent primes are not def areAdjacentPrimes(a, b, c) :     # Check given three numbers are primes are not     if (isPrime(a) == False or isPrime(b) == False                             or isPrime(c) == False) :         return False        # Find next prime of a     nxt = nextPrime(a)        # If next is not same as 'a'     if (nxt != b) :         return False        # If next next is not same as 'c'     if (nextPrime(b) != c) :         return False        return True        # Driver code for above functions if (areAdjacentPrimes(11, 13, 19)) :     print( "Yes"),  else :     print( "No")           #This code is contributed by NIKITA TIWARI.

C#

 // Java program to check given three numbers are // primes are not. using System;    class GFG {     public static bool isPrime(int n)     {         // check if n is a multiple of 2         if (n % 2 == 0)             return false;            // if not, then just check the odds         for (int i = 3; i * i <= n; i += 2)             if (n % i == 0)                 return false;         return true;     }        // return next prime number     public static int nextPrime(int start)     {         // start with next number.         int next = start + 1;            // breaks after finding next prime number         while (!isPrime(next))             next++;            return next;     }        // check given three numbers are adjacent primes are not.     public static bool areAdjacentPrimes(int a, int b, int c)     {         // check given three numbers are primes are not.         if (!isPrime(a) || !isPrime(b) || !isPrime(c))             return false;            // find next prime of a         int next = nextPrime(a);            // If next is not same as 'a'         if (next != b)             return false;            // If next next is not same as 'c'         if (nextPrime(b) != c)             return false;            return true;     }        // Driver code      public static void Main ()     {         if (areAdjacentPrimes(11, 13, 19))             Console.WriteLine("Yes");         else             Console.WriteLine("No");     } }    // This article is contributed by vt_m.

PHP



Output :

No

My Personal Notes arrow_drop_up pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.