# Check whether two points (x1, y1) and (x2, y2) lie on same side of a given line or not

Given three integers a, b and c which represents coefficients of the equation of a line a * x + b * y – c = 0. Given two integer points (x1, y1) and (x2, y2). The task is to determine whether the points (x1, y1) and (x2, y2) lie on the same side of the given line or not.

Examples:

Input : a = 1, b = 1, c = 1, x1 = 1, y1 = 1, x2 = 1, y2 = 2
Output : yes
On applying (x1, y1) and (x2, y2) on a * x + b * y – c, gives 1 and 2 respectively both of which have the same sign, hence both the points lie on same side of the line.

Input : a = 1, b = 1, c = 1, x1 = 1, y1 = 1, x2 = 0, y2 = 0
Output : no

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach : Apply both the points on given line equation and check if the obtained values belong to same parity or not.

Below is the implementation of the above approach:

## C++

 `// C++ program to check if two points  ` `// lie on the same side or not ` `#include ` `using` `namespace` `std; ` ` `  `// Function to check if two points  ` `// lie on the same side or not ` `bool` `pointsAreOnSameSideOfLine(``int` `a, ``int` `b, ``int` `c,  ` `                        ``int` `x1,    ``int` `y1, ``int` `x2, ``int` `y2) ` `{ ` `    ``int` `fx1; ``// Variable to store a * x1 + b * y1 - c ` `    ``int` `fx2; ``// Variable to store a * x2 + b * y2 - c ` ` `  `    ``fx1 = a * x1 + b * y1 - c; ` `    ``fx2 = a * x2 + b * y2 - c; ` ` `  `    ``// If fx1 and fx2 have same sign ` `    ``if` `((fx1 * fx2) > 0) ` `        ``return` `true``; ` ` `  `    ``return` `false``; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `a = 1, b = 1, c = 1; ` `    ``int` `x1 = 1, y1 = 1; ` `    ``int` `x2 = 2, y2 = 1; ` ` `  `    ``if` `(pointsAreOnSameSideOfLine(a, b, c, x1, y1, x2, y2)) ` `        ``cout << ``"Yes"``; ` `    ``else` `        ``cout << ``"No"``; ` `} `

## Java

 `// Java program to check if two points  ` `// lie on the same side or not ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` ` `  `// Function to check if two points  ` `// lie on the same side or not ` `static` `boolean` `pointsAreOnSameSideOfLine(``int` `a, ``int` `b,  ` `                                         ``int` `c, ``int` `x1,  ` `                                         ``int` `y1, ``int` `x2,  ` `                                         ``int` `y2) ` `{ ` `    ``int` `fx1; ``// Variable to store a * x1 + b * y1 - c ` `    ``int` `fx2; ``// Variable to store a * x2 + b * y2 - c ` ` `  `    ``fx1 = a * x1 + b * y1 - c; ` `    ``fx2 = a * x2 + b * y2 - c; ` ` `  `    ``// If fx1 and fx2 have same sign ` `    ``if` `((fx1 * fx2) > ``0``) ` `        ``return` `true``; ` ` `  `    ``return` `false``; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `a = ``1``, b = ``1``, c = ``1``; ` `    ``int` `x1 = ``1``, y1 = ``1``; ` `    ``int` `x2 = ``2``, y2 = ``1``; ` ` `  `    ``if` `(pointsAreOnSameSideOfLine(a, b, c, x1, y1, x2, y2)) ` `        ``System.out.println(``"Yes"``); ` `    ``else` `        ``System.out.println(``"No"``); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Python3

 `# Python3 program to check if two points ` `# lie on the same side or not ` ` `  `# Function to check if two points ` `# lie on the same side or not ` `def` `pointsAreOnSameSideOfLine(a, b, c, x1, y1, x2, y2): ` `    ``fx1 ``=` `0` `# Variable to store a * x1 + b * y1 - c ` `    ``fx2 ``=` `0` `# Variable to store a * x2 + b * y2 - c ` ` `  `    ``fx1 ``=` `a ``*` `x1 ``+` `b ``*` `y1 ``-` `c ` `    ``fx2 ``=` `a ``*` `x2 ``+` `b ``*` `y2 ``-` `c ` ` `  `    ``# If fx1 and fx2 have same sign ` `    ``if` `((fx1 ``*` `fx2) > ``0``): ` `        ``return` `True` ` `  `    ``return` `False` ` `  `# Driver code ` `a, b, c ``=` `1``, ``1``, ``1` `x1, y1 ``=` `1``, ``1` `x2, y2 ``=` `2``, ``1` ` `  `if` `(pointsAreOnSameSideOfLine(a, b, c,  ` `                              ``x1, y1, x2, y2)): ` `    ``print``(``"Yes"``) ` `else``: ` `    ``print``(``"No"``) ` ` `  `# This code is contributed by Mohit Kumar `

## C#

 `// C# program to check if two points  ` `// lie on the same side or not ` `using` `System; ` `class` `GFG ` `{ ` ` `  `// Function to check if two points  ` `// lie on the same side or not ` `static` `bool` `pointsAreOnSameSideOfLine(``int` `a, ``int` `b,  ` `                                      ``int` `c, ``int` `x1,  ` `                                      ``int` `y1, ``int` `x2,  ` `                                      ``int` `y2) ` `{ ` `    ``int` `fx1; ``// Variable to store a * x1 + b * y1 - c ` `    ``int` `fx2; ``// Variable to store a * x2 + b * y2 - c ` ` `  `    ``fx1 = a * x1 + b * y1 - c; ` `    ``fx2 = a * x2 + b * y2 - c; ` ` `  `    ``// If fx1 and fx2 have same sign ` `    ``if` `((fx1 * fx2) > 0) ` `        ``return` `true``; ` ` `  `    ``return` `false``; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main() ` `{ ` `    ``int` `a = 1, b = 1, c = 1; ` `    ``int` `x1 = 1, y1 = 1; ` `    ``int` `x2 = 2, y2 = 1; ` ` `  `    ``if` `(pointsAreOnSameSideOfLine(a, b, c, x1, y1, x2, y2)) ` `        ``Console.WriteLine(``"Yes"``); ` `    ``else` `        ``Console.WriteLine(``"No"``); ` `} ` `} ` ` `  `// This code is contributed by Code_Mech `

Output:

```Yes
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.