Check whether the sum of absolute difference of adjacent digits is Prime or not
Given a number a N and the task is to check weather the sum of absolute difference of adjacent digit is a prime or not.
Examples:
Input: N = 142 Output: Prime Sum = |1-4| + |4-2| = 5 i.e. prime. Input: N = 347 Output: Not prime
Approach: Find the sum of absolute difference of adjacent digits and then check if that sum is prime or not.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include<bits/stdc++.h> using namespace std; // Function to check for a prime number bool Prime( int n){ if ( n == 1){ return false ; } for ( int i=2;i*i<=n;i++){ if (n % i == 0) return false ; } return true ; } // Function to find the sum of array bool checkSumPrime(string st){ int summ = 0; for ( int i=1;i<st.size();i++) summ+= abs (st[i-1]-st[i]); if (Prime(summ)) return true ; else return false ; } // Driver code int main(){ int num = 142; string s= "142" ; if (checkSumPrime(s)) cout<< "Prime\n" ; else cout<< "Not Prime\n" ; return 0; } |
chevron_right
filter_none
Java
// Java implementation of the above approach import java.util.*; class GFG { // Function to check for a prime number static boolean Prime( int n) { if (n == 1 ) return false ; for ( int i = 2 ; i * i <= n; i++) if (n % i == 0 ) return false ; return true ; } // Function to find the sum of array static boolean checkSumPrime(String str) { int summ = 0 ; for ( int i = 1 ; i < str.length(); i++) summ += Math.abs(str.charAt(i - 1 ) - str.charAt(i)); if (Prime(summ)) return true ; else return false ; } // Driver Code public static void main(String[] args) { int num = 142 ; String str = "142" ; if (checkSumPrime(str)) System.out.println( "Prime" ); else System.out.println( "Not Prime" ); } } // This code is contributed by // sanjeev2552 |
chevron_right
filter_none
Python3
# Python3 implementation of the above approach import math as mt # Function to check for a prime number def Prime(n): if n = = 1 : return False for i in range ( 2 , mt.ceil(mt.sqrt(n + 1 ))): if n % i = = 0 : return False return True # Function to find the sum of array def checkSumPrime(string): summ = 0 for i in range ( 1 , len (string)): summ + = abs ( int (string[i - 1 ]) - int (string[i])) if Prime(summ): return True else : return False # Driver code num = 142 string = str (num) s = [i for i in string] if checkSumPrime(s): print ( "Prime" ) else : print ( "Not Prime\n" ) # This code is contributed by Mohit Kumar |
chevron_right
filter_none
C#
// C# implementation of the above approach using System; class GFG { // Function to check for a prime number static bool Prime( int n) { if (n == 1) return false ; for ( int i = 2; i * i <= n; i++) if (n % i == 0) return false ; return true ; } // Function to find the sum of array static bool checkSumPrime(String str) { int summ = 0; for ( int i = 1; i < str.Length; i++) summ += Math.Abs(str[i - 1] - str[i]); if (Prime(summ)) return true ; else return false ; } // Driver Code public static void Main(String[] args) { String str = "142" ; if (checkSumPrime(str)) Console.WriteLine( "Prime" ); else Console.WriteLine( "Not Prime" ); } } // This code is contributed by Rajput-Ji |
chevron_right
filter_none
Output:
Prime
Recommended Posts:
- Arrange first N natural numbers such that absolute difference between all adjacent elements > 1
- Pair of prime numbers with a given sum and minimum absolute difference
- Minimum absolute difference of a number and its closest prime
- Absolute difference between the Product of Non-Prime numbers and Prime numbers of an Array
- Absolute Difference between the Sum of Non-Prime numbers and Prime numbers of an Array
- Absolute difference between the XOR of Non-Prime numbers and Prime numbers of an Array
- Count Numbers in Range with difference between Sum of digits at even and odd positions as Prime
- Check if difference of areas of two squares is prime
- Print prime numbers with prime sum of digits in an array
- Sum of prime numbers without odd prime digits
- Minimum absolute difference between N and a power of 2
- Find the node whose absolute difference with X gives minimum value
- Find the node whose absolute difference with X gives maximum value
- Quick ways to check for Prime and find next Prime in Java
- Pair with minimum absolute difference after solving each query
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.