Check whether the point (x, y) lies on a given line
Given the values of m and c for the equation of a line y = (m * x) + c, the task is to find whether the point (x, y) lies on the given line.
Examples:
Input: m = 3, c = 2, x = 1, y = 5
Output: Yes
m * x + c = 3 * 1 + 2 = 3 + 2 = 5 which is equal to y
Hence, the given point satisfies the line’s equationInput: m = 5, c = 2, x = 2, y = 5
Output: No
Approach: In order for the given point to lie on the line, it must satisfy the equation of the line. Check whether y = (m * x) + c holds true.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function that return true if // the given point lies on the given line bool pointIsOnLine( int m, int c, int x, int y) { // If (x, y) satisfies the equation of the line if (y == ((m * x) + c)) return true ; return false ; } // Driver code int main() { int m = 3, c = 2; int x = 1, y = 5; if (pointIsOnLine(m, c, x, y)) cout << "Yes" ; else cout << "No" ; } |
Java
// Java implementation of the approach class GFG { // Function that return true if // the given point lies on the given line static boolean pointIsOnLine( int m, int c, int x, int y) { // If (x, y) satisfies the equation // of the line if (y == ((m * x) + c)) return true ; return false ; } // Driver code public static void main(String[] args) { int m = 3 , c = 2 ; int x = 1 , y = 5 ; if (pointIsOnLine(m, c, x, y)) System.out.print( "Yes" ); else System.out.print( "No" ); } } // This code has been contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach # Function that return true if the # given point lies on the given line def pointIsOnLine(m, c, x, y): # If (x, y) satisfies the # equation of the line if (y = = ((m * x) + c)): return True ; return False ; # Driver code m = 3 ; c = 2 ; x = 1 ; y = 5 ; if (pointIsOnLine(m, c, x, y)): print ( "Yes" ); else : print ( "No" ); # This code is contributed by mits |
C#
// C# implementation of the approach using System; class GFG { // Function that return true if // the given point lies on the given line static bool pointIsOnLine( int m, int c, int x, int y) { // If (x, y) satisfies the equation // of the line if (y == ((m * x) + c)) return true ; return false ; } // Driver code public static void Main() { int m = 3, c = 2; int x = 1, y = 5; if (pointIsOnLine(m, c, x, y)) Console.Write( "Yes" ); else Console.Write( "No" ); } } // This code is contributed by Akanksha Rai |
PHP
<?php // PHP implementation of the approach // Function that return true if the // given point lies on the given line function pointIsOnLine( $m , $c , $x , $y ) { // If (x, y) satisfies the equation // of the line if ( $y == (( $m * $x ) + $c )) return true; return false; } // Driver code $m = 3; $c = 2; $x = 1; $y = 5; if (pointIsOnLine( $m , $c , $x , $y )) echo "Yes" ; else echo "No" ; // This code is contributed by Ryuga ?> |
Javascript
<script> // Javascript implementation of the approach // Function that return true if // the given point lies on the given line function pointIsOnLine(m, c, x, y) { // If (x, y) satisfies the equation // of the line if (y == ((m * x) + c)) return true ; return false ; } // Driver code var m = 3, c = 2; var x = 1, y = 5; if (pointIsOnLine(m, c, x, y)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by Rajput-Ji </script> |
Output:
Yes
Time Complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...