Skip to content
Related Articles

Related Articles

Check whether the number can be made perfect square after adding 1

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 22 Jun, 2022

Given an integer N, the task is to check whether N the given number can be made a perfect square after adding 1 to it.

Examples:  

Input:
Output: Yes 
3 + 1 = 4 which is a perfect square i.e. 22

Input:
Output: No 
5 + 1 = 6 which is not a perfect square. 
 

Approach: Check whether n + 1 is a perfect square or not by taking the square root of n + 1 and checking whether it is an integer. If it is then n + 1 is a perfect square and n is a sunny number.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true
// if x is a perfect square
bool isPerfectSquare(long double x)
{
 
    // Find floating point value of
    // square root of x
    long double sr = sqrt(x);
 
    // If square root is an integer
    return ((sr - floor(sr)) == 0);
}
 
// Function that returns true
// if n is a sunny number
bool isSunnyNum(int n)
{
 
    // If (n + 1) is a perfect square
    if (isPerfectSquare(n + 1))
        return true;
    return false;
}
 
// Driver code
int main()
{
    int n = 3;
 
    if (isSunnyNum(n))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java




// Java implementation of the approach
 
class GFG
{
     
    // Function that returns true
    // if x is a perfect square
    static boolean isPerfectSquare(double x)
    {
     
        // Find floating point value of
        // square root of x
        double sr = Math.sqrt(x);
     
        // If square root is an integer
        return ((sr - Math.floor(sr)) == 0);
    }
     
    // Function that returns true
    // if n is a sunny number
    static boolean isSunnyNum(int n)
    {
     
        // If (n + 1) is a perfect square
        if (isPerfectSquare(n + 1))
            return true;
        return false;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 3;
     
        if (isSunnyNum(n))
            System.out.println("Yes");
        else
            System.out.println("No");
     
    }
}
 
// This code is contributed by Ryuga

Python3




# Python3 implementation of the approach
import math as mt
 
# Function that returns true
# if x is a perfect square
def isPerfectSquare(x):
 
    # Find floating po value of
    # square root of x
    sr = mt.sqrt(x)
 
    # If square root is an eger
    return ((sr - mt.floor(sr)) == 0)
 
# Function that returns true
# if n is a sunny number
def isSunnyNum(n):
 
    # If (n + 1) is a perfect square
    if (isPerfectSquare(n + 1)):
        return True
    return False
 
# Driver code
n = 3
 
if (isSunnyNum(n)):
    print("Yes")
else:
    print("No")
 
# This code is contributed
# by Mohit Kumar

C#




// C# implementation of the approach
using System;
class GFG
{
     
    // Function that returns true
    // if x is a perfect square
    static bool isPerfectSquare(double x)
    {
     
        // Find floating point value of
        // square root of x
        double sr = Math.Sqrt(x);
     
        // If square root is an integer
        return ((sr - Math.Floor(sr)) == 0);
    }
     
    // Function that returns true
    // if n is a sunny number
    static bool isSunnyNum(int n)
    {
     
        // If (n + 1) is a perfect square
        if (isPerfectSquare(n + 1))
            return true;
        return false;
    }
     
    // Driver code
    public static void Main ()
    {
        int n = 3;
     
        if (isSunnyNum(n))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
 
// This code is contributed by Code_Mech.

PHP




<?php
// PHP implementation of the approach
 
// Function that returns true
// if x is a perfect square
function isPerfectSquare($x)
{
 
    // Find floating point value of
    // square root of x
    $sr = sqrt($x);
 
    // If square root is an integer
    return (($sr - floor($sr)) == 0);
}
 
// Function that returns true
// if n is a sunny number
function isSunnyNum($n)
{
 
    // If (n + 1) is a perfect square
    if (isPerfectSquare($n + 1))
        return true;
    return false;
}
 
// Driver code
$n = 3;
 
if (isSunnyNum($n))
    echo "Yes";
else
    echo "No";
 
// This code is contributed
// by Akanksha Rai
?>

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function that returns true
// if x is a perfect square
function isPerfectSquare(x)
{
     
    // Find floating point value of
    // square root of x
    let sr = Math.sqrt(x);
 
    // If square root is an integer
    return ((sr - Math.floor(sr)) == 0);
}
 
// Function that returns true
// if n is a sunny number
function isSunnyNum(n)
{
     
    // If (n + 1) is a perfect square
    if (isPerfectSquare(n + 1))
        return true;
         
    return false;
}
 
// Driver code
let n = 3;
 
if (isSunnyNum(n))
    document.write("Yes");
else
    document.write("No");
     
// This code is contributed by rishavmahato348
 
</script>

Output: 

Yes

 

Time Complexity: O(1)

Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!