Open In App

Check whether the given node is in the path between the nodes U and V

Improve
Improve
Like Article
Like
Save
Share
Report

Given three vertices U, V and R of a binary tree, the task is to check whether R lies in the path between U and V. If it is not present in the path then print No otherwise print Yes.
Examples: 
 

Input: U = 4, V = 6, R = 2 
 

Output: Yes 
Path 4 -> 2 -> 1 -> 3 -> 6 contains 2
Input: U = 4, V = 6, R = 5 
 

Output: No 
Path 4 -> 2 -> 1 -> 3 -> 6 does not contain 5 
 

 

Approach: The idea is to use Lowest Common Ancestor of two nodes. There are following cases for R to exist in the path between U and V
 

  1. R is the lowest common ancestor of U and V.
  2. R is in the left subtree of the lowest common ancestor of U and V and is above V.
  3. R is in the right subtree of the lowest common ancestor of U and V and is above U.

To know more about the lowest common ancestor, read the post here.
Below is the implementation of the above approach: 
 

C++




// CPP Program to implement the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Table for storing 2^ith parent
vector<vector<int>> table;
 
// Variable to store the height of the tree
int height;
 
// Graph
vector<vector<int>> Graph;
 
// Arrays to mark start and end time for a node
vector<int> timeIn, timeOut;
 
// Timer
int cnt_time;
 
// constructor for initializing
// the global variables
void initialise(int n)
{
 
  // log(n) with base 2
  height = (int)ceil(log2(n));
 
  // Filling with -1 as initial
  table.resize(n + 1, vector<int>(height + 1, -1));
 
  // Fill the graph with empty lists
  Graph.resize(n + 1);
  timeIn.resize(n + 1);
  timeOut.resize(n + 1);
  cnt_time = 0;
}
 
// Dfs for pre-processing sparse table and
// calculating start and end time
void dfs(int s, int p)
{
 
  // Parent at 1 node distance is always
  // it's direct parent
  table[s][0] = p;
 
  // Start time noted
  timeIn[s] = ++cnt_time;
 
  // Filling sparse table recursively
  for (int i = 1; i <= height; i++)
    table[s][i] = table[table[s][i - 1]][i - 1];
 
  // Traversing children of source
  for (int child : Graph[s]) {
    if (child == p) continue;
    dfs(child, s);
  }
 
  // End time noted
  timeOut[s] = ++cnt_time;
}
 
// Helper function to check lowest common Ancestor
bool check(int u, int v)
{
  return timeIn[u] <= timeIn[v] && timeOut[u] >= timeOut[v];
}
 
// Function to return Lowest Common Ancestor of U and V
int lowestCommonAncestor(int U, int V)
{
  if (check(U, V)) return U;
 
  if (check(V, U)) return V;
 
  for (int i = height; i >= 0; i--)
  {
    if (!check(table[U][i], V)) U = table[U][i];
  }
 
  return table[U][0];
}
 
// Function that return true if R
// exists on the path between U
// and V in the given tree
bool isPresent(int U, int V, int R)
{
 
  // Dfs
  dfs(1, 1);
 
  // Calculating LCA between U and V
  int LCA = lowestCommonAncestor(U, V);
 
  // Calculating LCA between U and R
  int LCA_1 = lowestCommonAncestor(U, R);
 
  // Calculating LCA between U and V
  int LCA_2 = lowestCommonAncestor(V, R);
 
  if (LCA == R || (LCA_1 == LCA && LCA_2 == R) ||
      (LCA_2 == LCA && LCA_1 == R)) {
    return true;
  }
  return false;
}
 
// Driver code
int main(int argc, char const *argv[])
{
 
  // Number of vertices
  int n = 6;
  initialise(n);
 
  // Create the graph
  Graph[1].push_back(2);
  Graph[2].push_back(1);
  Graph[1].push_back(3);
  Graph[3].push_back(1);
  Graph[2].push_back(4);
  Graph[4].push_back(2);
  Graph[2].push_back(5);
  Graph[5].push_back(2);
  Graph[3].push_back(6);
  Graph[6].push_back(3);
 
  int U = 4, V = 6, R = 2;
  if (isPresent(U, V, R))
    cout << "Yes" << endl;
  else
    cout << "No" << endl;
}
 
// This code is contributed by sanjeev2552


Java




// Java implementation of the approach
import java.util.*;
 
class GfG {
 
    // Table for storing 2^ith parent
    private static int table[][];
 
    // Variable to store the height of the tree
    private static int height;
 
    // Graph
    private static ArrayList<ArrayList<Integer> > Graph;
 
    // Arrays to mark start and end time for a node
    private static int timeIn[];
    private static int timeOut[];
 
    // Timer
    private static int time;
 
    // Private constructor for initializing
    // the global variables
    private GfG(int n)
    {
 
        // log(n) with base 2
        height = (int)Math.ceil(Math.log10(n) / Math.log10(2));
        table = new int[n + 1][height + 1];
 
        // Fill the graph with empty lists
        Graph = new ArrayList<ArrayList<Integer> >();
        for (int i = 0; i <= n; i++)
            Graph.add(new ArrayList<Integer>());
        timeIn = new int[n + 1];
        timeOut = new int[n + 1];
        time = 0;
    }
 
    // Filling with -1 as initial
    private static void preprocessing(int n)
    {
        for (int i = 0; i < n + 1; i++) {
            Arrays.fill(table[i], -1);
        }
    }
 
    // Dfs for pre-processing sparse table and
    // calculating start and end time
    private static void dfs(int s, int p)
    {
        // Parent at 1 node distance is always
        // it's direct parent
        table[s][0] = p;
 
        // Start time noted
        timeIn[s] = ++time;
 
        // Filling sparse table recursively
        for (int i = 1; i <= height; i++)
            table[s][i] = table[table[s][i - 1]][i - 1];
 
        // Traversing children of source
        for (int child : Graph.get(s)) {
            if (child == p)
                continue;
            dfs(child, s);
        }
 
        // End time noted
        timeOut[s] = ++time;
    }
 
    // Helper function to check lowest common Ancestor
    private static boolean check(int u, int v)
    {
        return timeIn[u] <= timeIn[v] && timeOut[u] >= timeOut[v];
    }
 
    // Function to return Lowest Common Ancestor of U and V
    private static int lowestCommonAncestor(int U, int V)
    {
        if (check(U, V))
            return U;
 
        if (check(V, U))
            return V;
 
        for (int i = height; i >= 0; i--) {
            if (!check(table[U][i], V))
                U = table[U][i];
        }
 
        return table[U][0];
    }
 
    // Function that return true if R
    // exists on the path between U
    // and V in the given tree
    private static boolean isPresent(int U, int V, int R)
    {
 
        // Dfs
        dfs(1, 1);
 
        // Calculating LCA between U and V
        int LCA = lowestCommonAncestor(U, V);
 
        // Calculating LCA between U and R
        int LCA_1 = lowestCommonAncestor(U, R);
 
        // Calculating LCA between U and V
        int LCA_2 = lowestCommonAncestor(V, R);
 
        if (LCA == R || (LCA_1 == LCA && LCA_2 == R)
            || (LCA_2 == LCA && LCA_1 == R)) {
            return true;
        }
        return false;
    }
 
    // Driver code
    public static void main(String args[])
    {
        // Number of vertices
        int n = 6;
        GfG obj = new GfG(n);
 
        // Create the graph
        preprocessing(n);
        Graph.get(1).add(2);
        Graph.get(2).add(1);
        Graph.get(1).add(3);
        Graph.get(3).add(1);
        Graph.get(2).add(4);
        Graph.get(4).add(2);
        Graph.get(2).add(5);
        Graph.get(5).add(2);
        Graph.get(3).add(6);
        Graph.get(6).add(3);
 
        int U = 4, V = 6, R = 2;
        if (isPresent(U, V, R))
            System.out.print("Yes");
        else
            System.out.print("No");
    }
}


Python3




# Python3 implementation of the approach
import math
 
n = 6
 
# Graph
Graph = []
 
# log(n) with base 2
height = math.ceil(math.log10(n) / math.log10(2))
table = [[-1 for i in range(n + 1)] for j in range(n + 1)]
 
# Fill the graph with empty lists
for i in range(n + 1):
  Graph.append([])
timeIn = [0]*(n + 1)
timeOut = [0]*(n + 1)
time = 0
 
# Filling with -1 as initial
def preprocessing(n):
    for i in range(n + 1):
        for j in range(height + 1):
            table[i][j] = -1
 
# Dfs for pre-processing sparse table and
# calculating start and end time
def dfs(s, p):
    global time
    # Parent at 1 node distance is always
    # it's direct parent
    table[s][0] = p
     
    # Start time noted
    timeIn[s] = time+1
 
    # Filling sparse table recursively
    for i in range(1, height + 1):
        table[s][i] = table[table[s][i - 1]][i - 1]
 
    # Traversing children of source
    for child in range(len(Graph[s])):
        if Graph[s][child] == p:
            continue
        dfs(Graph[s][child], s)
 
    # End time noted
    time+=1
    timeOut[s] = time
 
# Helper function to check lowest common Ancestor
def check(u, v):
    return (timeIn[u] <= timeIn[v] and timeOut[u] >= timeOut[v])
 
# Function to return Lowest Common Ancestor of U and V
def lowestCommonAncestor(U, V):
    if check(U, V):
        return U
 
    if check(V, U):
        return V
 
    for i in range(height, -1, -1):
        if not check(table[U][i], V):
            U = table[U][i]
 
    return table[U][0]
 
# Function that return true if R
# exists on the path between U
# and V in the given tree
def isPresent(U, V, R):
    # Dfs
    dfs(1, 1)
 
    # Calculating LCA between U and V
    LCA = lowestCommonAncestor(U, V)
 
    # Calculating LCA between U and R
    LCA_1 = lowestCommonAncestor(U, R)
 
    # Calculating LCA between U and V
    LCA_2 = lowestCommonAncestor(V, R)
 
    if LCA == R or (LCA_1 == LCA and LCA_2 == R) or (LCA_2 == LCA and LCA_1 == R):
        return True
    return False
 
# Create the graph
preprocessing(n)
Graph[1].append(2)
Graph[2].append(1)
Graph[1].append(3)
Graph[3].append(1)
Graph[2].append(4)
Graph[4].append(2)
Graph[2].append(5)
Graph[5].append(2)
Graph[3].append(6)
Graph[6].append(3)
 
U, V, R = 4, 6, 2
if isPresent(U, V, R):
  print("Yes")
else:
  print("No")
   
  # This code is contributed by suresh07.


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GfG
{
 
    // Table for storing 2^ith parent
    private static int [,]table;
 
    // Variable to store the height of the tree
    private static int height;
 
    // Graph
    private static List<List<int> > Graph;
 
    // Arrays to mark start and end time for a node
    private static int []timeIn;
    private static int []timeOut;
 
    // Timer
    private static int time;
 
    // Private constructor for initializing
    // the global variables
    private GfG(int n)
    {
 
        // log(n) with base 2
        height = (int)Math.Ceiling(Math.Log10(n) / Math.Log10(2));
        table = new int[n + 1, height + 1];
 
        // Fill the graph with empty lists
        Graph = new List<List<int> >();
        for (int i = 0; i <= n; i++)
            Graph.Add(new List<int>());
        timeIn = new int[n + 1];
        timeOut = new int[n + 1];
        time = 0;
    }
 
    // Filling with -1 as initial
    private static void preprocessing(int n)
    {
        for (int i = 0; i < n + 1; i++)
        {
            for(int j = 0; j < height + 1; j++)
                table[i, j] = -1;
        }
    }
 
    // Dfs for pre-processing sparse table and
    // calculating start and end time
    private static void dfs(int s, int p)
    {
        // Parent at 1 node distance is always
        // it's direct parent
        table[s, 0] = p;
 
        // Start time noted
        timeIn[s] = ++time;
 
        // Filling sparse table recursively
        for (int i = 1; i <= height; i++)
            table[s, i] = table[table[s, i - 1], i - 1];
 
        // Traversing children of source
        foreach (int child in Graph[s])
        {
            if (child == p)
                continue;
            dfs(child, s);
        }
 
        // End time noted
        timeOut[s] = ++time;
    }
 
    // Helper function to check lowest common Ancestor
    private static bool check(int u, int v)
    {
        return timeIn[u] <= timeIn[v] && timeOut[u] >= timeOut[v];
    }
 
    // Function to return Lowest Common Ancestor of U and V
    private static int lowestCommonAncestor(int U, int V)
    {
        if (check(U, V))
            return U;
 
        if (check(V, U))
            return V;
 
        for (int i = height; i >= 0; i--)
        {
            if (!check(table[U, i], V))
                U = table[U, i];
        }
 
        return table[U, 0];
    }
 
    // Function that return true if R
    // exists on the path between U
    // and V in the given tree
    private static bool isPresent(int U, int V, int R)
    {
 
        // Dfs
        dfs(1, 1);
 
        // Calculating LCA between U and V
        int LCA = lowestCommonAncestor(U, V);
 
        // Calculating LCA between U and R
        int LCA_1 = lowestCommonAncestor(U, R);
 
        // Calculating LCA between U and V
        int LCA_2 = lowestCommonAncestor(V, R);
 
        if (LCA == R || (LCA_1 == LCA && LCA_2 == R)
            || (LCA_2 == LCA && LCA_1 == R))
        {
            return true;
        }
        return false;
    }
 
    // Driver code
    public static void Main(String []args)
    {
        // Number of vertices
        int n = 6;
        GfG obj = new GfG(n);
 
        // Create the graph
        preprocessing(n);
        Graph[1].Add(2);
        Graph[2].Add(1);
        Graph[1].Add(3);
        Graph[3].Add(1);
        Graph[2].Add(4);
        Graph[4].Add(2);
        Graph[2].Add(5);
        Graph[5].Add(2);
        Graph[3].Add(6);
        Graph[6].Add(3);
 
        int U = 4, V = 6, R = 2;
        if (isPresent(U, V, R))
            Console.Write("Yes");
        else
            Console.Write("No");
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
    // JavaScript implementation of the approach
     
    let n = 6;
     
    // Table for storing 2^ith parent
    let table;
  
    // Variable to store the height of the tree
    let height;
  
    // Graph
    let Graph = [];
  
    // Arrays to mark start and end time for a node
    let timeIn;
    let timeOut;
  
    // Timer
    let time;
  
  
    // log(n) with base 2
    height = Math.ceil(Math.log10(n) / Math.log10(2));
    table = new Array(n + 1);
 
    // Fill the graph with empty lists
    for (let i = 0; i <= n; i++)
      Graph.push([]);
    timeIn = new Array(n + 1);
    timeOut = new Array(n + 1);
    time = 0;
  
    // Filling with -1 as initial
    function preprocessing(n)
    {
        for (let i = 0; i < n + 1; i++) {
            table[i] = new Array(height + 1);
            for(let j = 0; j < height + 1; j++)
            {
                table[i][j] = -1;
            }
        }
    }
  
    // Dfs for pre-processing sparse table and
    // calculating start and end time
    function dfs(s, p)
    {
        // Parent at 1 node distance is always
        // it's direct parent
        table[s][0] = p;
  
        // Start time noted
        timeIn[s] = ++time;
  
        // Filling sparse table recursively
        for (let i = 1; i <= height; i++)
            table[s][i] = table[table[s][i - 1]][i - 1];
  
        // Traversing children of source
        for (let child = 0; child < Graph[s].length; child++) {
            if (Graph[s][child] == p)
                continue;
            dfs(Graph[s][child], s);
        }
  
        // End time noted
        timeOut[s] = ++time;
    }
  
    // Helper function to check lowest common Ancestor
    function check(u, v)
    {
        return timeIn[u] <= timeIn[v] && timeOut[u] >= timeOut[v];
    }
  
    // Function to return Lowest Common Ancestor of U and V
    function lowestCommonAncestor(U, V)
    {
        if (check(U, V))
            return U;
  
        if (check(V, U))
            return V;
  
        for (let i = height; i >= 0; i--) {
            if (!check(table[U][i], V))
                U = table[U][i];
        }
  
        return table[U][0];
    }
  
    // Function that return true if R
    // exists on the path between U
    // and V in the given tree
    function isPresent(U, V, R)
    {
  
        // Dfs
        dfs(1, 1);
  
        // Calculating LCA between U and V
        let LCA = lowestCommonAncestor(U, V);
  
        // Calculating LCA between U and R
        let LCA_1 = lowestCommonAncestor(U, R);
  
        // Calculating LCA between U and V
        let LCA_2 = lowestCommonAncestor(V, R);
  
        if (LCA == R || (LCA_1 == LCA && LCA_2 == R)
            || (LCA_2 == LCA && LCA_1 == R)) {
            return true;
        }
        return false;
    }
 
    // Create the graph
    preprocessing(n);
    Graph[1].push(2);
    Graph[2].push(1);
    Graph[1].push(3);
    Graph[3].push(1);
    Graph[2].push(4);
    Graph[4].push(2);
    Graph[2].push(5);
    Graph[5].push(2);
    Graph[3].push(6);
    Graph[6].push(3);
 
    let U = 4, V = 6, R = 2;
    if (isPresent(U, V, R))
      document.write("Yes");
    else
      document.write("No");
 
</script>


 
 

Output: 

Yes

 

 

Time Complexity: O(NlogN) for pre-processing and logN for finding the lowest common ancestor.
Auxiliary Space: O(NlogN). 
 

 



Last Updated : 01 Nov, 2021
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads