# Check whether the binary equivalent of a number ends with “001” or not

Given a positive integer N, the task is to check whether the binary equivalent of that integer ends with “001” or not.
Print “Yes” if it ends in “001”. Otherwise, Print “No“.

Examples :

Input: N = 9
Output: Yes
Explanation
Binary of 9 = 1001, which ends with 001

Input: N = 5
Output: No
Binary of 5 = 101, which does not end in 001

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Naive Approach
Find the Binary Equivalent of N and check if 001 is a Suffix of its Binary Equivalent.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the ` `// above approach ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function returns true if ` `// s1 is suffix of s2 ` `bool` `isSuffix(string s1, ` `              ``string s2) ` `{ ` `    ``int` `n1 = s1.length(); ` `    ``int` `n2 = s2.length(); ` `    ``if` `(n1 > n2) ` `        ``return` `false``; ` `    ``for` `(``int` `i = 0; i < n1; i++) ` `        ``if` `(s1[n1 - i - 1] ` `            ``!= s2[n2 - i - 1]) ` `            ``return` `false``; ` `    ``return` `true``; ` `} ` ` `  `// Function to check if binary equivalent ` `// of a number ends in "001" or not ` `bool` `CheckBinaryEquivalent(``int` `N) ` `{ ` ` `  `    ``// To store the binary ` `    ``// number ` `    ``int` `B_Number = 0; ` `    ``int` `cnt = 0; ` ` `  `    ``while` `(N != 0) { ` ` `  `        ``int` `rem = N % 2; ` `        ``int` `c = ``pow``(10, cnt); ` `        ``B_Number += rem * c; ` `        ``N /= 2; ` ` `  `        ``// Count used to store ` `        ``// exponent value ` `        ``cnt++; ` `    ``} ` ` `  `    ``string bin = to_string(B_Number); ` `    ``return` `isSuffix(``"001"``, bin); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` ` `  `    ``int` `N = 9; ` `    ``if` `(CheckBinaryEquivalent(N)) ` `        ``cout << ``"Yes"``; ` `    ``else` `        ``cout << ``"No"``; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the above approach ` `class` `GFG{ ` `     `  `// Function returns true if ` `// s1 is suffix of s2 ` `static` `boolean` `isSuffix(String s1, String s2) ` `{ ` `    ``int` `n1 = s1.length(); ` `    ``int` `n2 = s2.length(); ` `     `  `    ``if` `(n1 > n2) ` `        ``return` `false``; ` `             `  `    ``for``(``int` `i = ``0``; i < n1; i++) ` `       ``if` `(s1.charAt(n1 - i - ``1``) !=  ` `           ``s2.charAt(n2 - i - ``1``)) ` `           ``return` `false``; ` `    ``return` `true``; ` `} ` `     `  `// Function to check if binary equivalent ` `// of a number ends in "001" or not ` `static` `boolean` `CheckBinaryEquivalent(``int` `N) ` `{ ` `     `  `    ``// To store the binary ` `    ``// number ` `    ``int` `B_Number = ``0``; ` `    ``int` `cnt = ``0``; ` `     `  `    ``while` `(N != ``0``) ` `    ``{ ` `     `  `        ``int` `rem = N % ``2``; ` `        ``int` `c = (``int``)Math.pow(``10``, cnt); ` `        ``B_Number += rem * c; ` `        ``N /= ``2``; ` `     `  `        ``// Count used to store ` `        ``// exponent value ` `        ``cnt++; ` `    ``} ` `    ``String bin = Integer.toString(B_Number); ` `    ``return` `isSuffix(``"001"``, bin); ` `} ` `     `  `// Driver code ` `public` `static` `void` `main (String[] args) ` `{ ` `    ``int` `N = ``9``; ` `     `  `    ``if` `(CheckBinaryEquivalent(N)) ` `        ``System.out.println(``"Yes"``); ` `    ``else` `        ``System.out.println(``"No"``); ` `} ` `} ` ` `  `// This code is contributed by AnkitRai01 `

## Python3

 `# Python3 implementation of the  ` `# above approach  ` ` `  `# Function returns true if  ` `# s1 is suffix of s2  ` `def` `isSuffix(s1, s2) :  ` ` `  `    ``n1 ``=` `len``(s1);  ` `    ``n2 ``=` `len``(s2);  ` `    ``if` `(n1 > n2) : ` `        ``return` `False``;  ` `    ``for` `i ``in` `range``(n1) : ` `        ``if` `(s1[n1 ``-` `i ``-` `1``] !``=` `s2[n2 ``-` `i ``-` `1``]) : ` `            ``return` `False``;  ` `    ``return` `True``;  ` ` `  `# Function to check if binary equivalent  ` `# of a number ends in "001" or not  ` `def` `CheckBinaryEquivalent(N) : ` ` `  `    ``# To store the binary  ` `    ``# number  ` `    ``B_Number ``=` `0``;  ` `    ``cnt ``=` `0``;  ` ` `  `    ``while` `(N !``=` `0``) : ` ` `  `        ``rem ``=` `N ``%` `2``;  ` `        ``c ``=` `10` `*``*` `cnt;  ` `        ``B_Number ``+``=` `rem ``*` `c;  ` `        ``N ``/``/``=` `2``;  ` ` `  `        ``# Count used to store  ` `        ``# exponent value  ` `        ``cnt ``+``=` `1``;  ` ` `  `    ``bin` `=` `str``(B_Number);  ` `    ``return` `isSuffix(``"001"``, ``bin``);  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``N ``=` `9``;  ` `    ``if` `(CheckBinaryEquivalent(N)) : ` `        ``print``(``"Yes"``);  ` `    ``else` `: ` `        ``print``(``"No"``);  ` `     `  `# This code is contributed by AnkitRai01 `

## C#

 `// C# implementation of the above approach ` `using` `System; ` ` `  `class` `GFG{ ` `     `  `// Function returns true if ` `// s1 is suffix of s2 ` `static` `bool` `isSuffix(``string` `s1, ``string` `s2) ` `{ ` `    ``int` `n1 = s1.Length; ` `    ``int` `n2 = s2.Length; ` `         `  `    ``if` `(n1 > n2) ` `        ``return` `false``; ` `                 `  `    ``for``(``int` `i = 0; i < n1; i++) ` `       ``if` `(s1[n1 - i - 1] !=  ` `           ``s2[n2 - i - 1]) ` `           ``return` `false``; ` `    ``return` `true``; ` `} ` `         `  `// Function to check if binary equivalent ` `// of a number ends in "001" or not ` `static` `bool` `CheckBinaryEquivalent(``int` `N) ` `{ ` `         `  `    ``// To store the binary ` `    ``// number ` `    ``int` `B_Number = 0; ` `    ``int` `cnt = 0; ` `         `  `    ``while` `(N != 0) ` `    ``{ ` `        ``int` `rem = N % 2; ` `        ``int` `c = (``int``)Math.Pow(10, cnt); ` `        ``B_Number += rem * c; ` `        ``N /= 2; ` `         `  `        ``// Count used to store ` `        ``// exponent value ` `        ``cnt++; ` `    ``} ` `    ``string` `bin = B_Number.ToString(); ` `    ``return` `isSuffix(``"001"``, bin); ` `} ` `     `  `// Driver code ` `public` `static` `void` `Main (``string``[] args) ` `{ ` `    ``int` `N = 9; ` `     `  `    ``if` `(CheckBinaryEquivalent(N)) ` `        ``Console.WriteLine(``"Yes"``); ` `    ``else` `        ``Console.WriteLine(``"No"``); ` `} ` `} ` ` `  `// This code is contributed by AnkitRai01 `

Output:

```Yes
```

Time complexity: O(N)
Auxiliary space: O(1)

Efficient Approach
We can observe that the binary equivalent of a number ends in “001” only when (N – 1) is divisible by 8.

Illustration:
The sequence 1, 9, 17, 25, 33……. has 001 as the suffix in their binary representation.
Nth term of the above sequence is denoted by 8 * N + 1
So the binary equivalent of a number ends in “001” only when (N – 1) % 8 == 0

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the above ` `// approach ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function to check if binary ` `// equivalent of a number ends ` `// in "001" or not ` `bool` `CheckBinaryEquivalent(``int` `N) ` `{ ` `    ``// To check if binary equivalent ` `    ``// of a number ends in ` `    ``// "001" or not ` `    ``return` `(N - 1) % 8 == 0; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` ` `  `    ``int` `N = 9; ` `    ``if` `(CheckBinaryEquivalent(N)) ` `        ``cout << ``"Yes"``; ` `    ``else` `        ``cout << ``"No"``; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the above approach ` `class` `GFG{ ` `     `  `// Function to check if binary ` `// equivalent of a number ends ` `// in "001" or not ` `static` `boolean` `CheckBinaryEquivalent(``int` `N) ` `{ ` `     `  `    ``// To check if binary equivalent ` `    ``// of a number ends in ` `    ``// "001" or not ` `    ``return` `(N - ``1``) % ``8` `== ``0``; ` `} ` `     `  `// Driver code ` `public` `static` `void` `main (String[] args) ` `{ ` `    ``int` `N = ``9``; ` `     `  `    ``if` `(CheckBinaryEquivalent(N)) ` `        ``System.out.println(``"Yes"``); ` `    ``else` `        ``System.out.println(``"No"``); ` `} ` `} ` ` `  `// This code is contributed by AnkitRai01 `

## Python3

 `# Python3 implementation of the above approach  ` ` `  `# Function to check if binary  ` `# equivalent of a number ends  ` `# in "001" or not  ` `def` `CheckBinaryEquivalent(N): ` ` `  `    ``# To check if binary equivalent  ` `    ``# of a number ends in  ` `    ``# "001" or not  ` `    ``return` `(N ``-` `1``) ``%` `8` `=``=` `0``;  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"``: ` ` `  `    ``N ``=` `9``;  ` `     `  `    ``if` `(CheckBinaryEquivalent(N)): ` `        ``print``(``"Yes"``);  ` `    ``else` `: ` `        ``print``(``"No"``);  ` `     `  `# This code is contributed by AnkitRai01 `

## C#

 `// C# implementation of the above approach ` `using` `System; ` ` `  `class` `GFG{ ` `         `  `// Function to check if binary ` `// equivalent of a number ends ` `// in "001" or not ` `static` `bool` `CheckBinaryEquivalent(``int` `N) ` `{ ` `         `  `    ``// To check if binary equivalent ` `    ``// of a number ends in ` `    ``// "001" or not ` `    ``return` `(N - 1) % 8 == 0; ` `} ` `         `  `// Driver code ` `public` `static` `void` `Main (``string``[] args) ` `{ ` `    ``int` `N = 9; ` `         `  `    ``if` `(CheckBinaryEquivalent(N)) ` `        ``Console.WriteLine(``"Yes"``); ` `    ``else` `        ``Console.WriteLine(``"No"``); ` `} ` `} ` ` `  `// This code is contributed by AnkitRai01`

Output:

```Yes
```

Time complexity: O(1)
Auxiliary space: O(1)

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : AnkitRai01