# Check whether sum of digits at odd places of a number is divisible by K

Given two integer ‘N’ and ‘K’, the task is to find the sum of digits of ‘N’ at it’s odd places (right to left) and check whether the sum is divisible by ‘K’. If it is divisible, output YES, otherwise output NO.

Examples:

Input: N = 4325, K = 4
Output: YES
Since, 3 + 5 = 8, which is divisible by 4.

Input: N = 1209, K = 3
Output: NO

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

• Find the sum of the digits of ‘N’ at odd places (right to left).
• Then check the divisibility of the sum by taking it’s modulo with ‘K’.
• If it is divisible then output ‘YES’, otherwise output ‘NO’.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// function that checks the ` `// divisibility of the sum ` `// of the digits at odd places ` `// of the given number ` `bool` `SumDivisible(``int` `n, ``int` `k) ` `{ ` `    ``int` `sum = 0, position = 1; ` `    ``while` `(n > 0) { ` ` `  `        ``// if position is odd ` `        ``if` `(position % 2 == 1) ` `            ``sum += n % 10; ` `        ``n = n / 10; ` `        ``position++; ` `    ``} ` ` `  `    ``if` `(sum % k == 0) ` `        ``return` `true``; ` `    ``return` `false``; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 592452; ` `    ``int` `k = 3; ` ` `  `    ``if` `(SumDivisible(n, k)) ` `        ``cout << ``"YES"``; ` `    ``else` `        ``cout << ``"NO"``; ` `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `import` `java.util.*; ` ` `  `class` `solution ` `{ ` ` `  `// function that checks the ` `// divisibility of the sum ` `// of the digits at odd places ` `// of the given number ` `static` `boolean` `SumDivisible(``int` `n, ``int` `k) ` `{ ` `    ``int` `sum = ``0``, position = ``1``; ` `    ``while` `(n > ``0``) { ` ` `  `        ``// if position is odd ` `        ``if` `(position % ``2` `== ``1``) ` `            ``sum += n % ``10``; ` `        ``n = n / ``10``; ` `        ``position++; ` `    ``} ` ` `  `    ``if` `(sum % k == ``0``) ` `        ``return` `true``; ` `    ``return` `false``; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String arr[]) ` `{ ` `    ``int` `n = ``592452``; ` `    ``int` `k = ``3``; ` ` `  `    ``if` `(SumDivisible(n, k)) ` `        ``System.out.println(``"YES"``); ` `    ``else` `        ``System.out.println(``"NO"``); ` ` `  `} ` `} ` `//This code is contributed by Surendra_Gangwar `

## Python 3

 `# Python 3 implementation of the approach ` ` `  `# function that checks the divisibility  ` `# of the sum of the digits at odd places ` `# of the given number ` `def` `SumDivisible(n, k): ` ` `  `    ``sum` `=` `0` `    ``position ``=` `1` `    ``while` `(n > ``0``) : ` ` `  `        ``# if position is odd ` `        ``if` `(position ``%` `2` `=``=` `1``): ` `            ``sum` `+``=` `n ``%` `10` `        ``n ``=` `n ``/``/` `10` `        ``position ``+``=` `1` `     `  `    ``if` `(``sum` `%` `k ``=``=` `0``): ` `        ``return` `True` `    ``return` `False` ` `  `# Driver code ` `if` `__name__ ``=``=``"__main__"``: ` `    ``n ``=` `592452` `    ``k ``=` `3` ` `  `    ``if` `(SumDivisible(n, k)): ` `        ``print``(``"YES"``) ` `    ``else``: ` `        ``print``(``"NO"``) ` ` `  `# This code is contributed  ` `# by ChitraNayal `

## C#

 `// C# implementation of the approach  ` `using` `System; ` ` `  `class` `GFG ` `{ ` `// function that checks the  ` `// divisibility of the sum  ` `// of the digits at odd places  ` `// of the given number  ` `static` `bool` `SumDivisible(``int` `n, ``int` `k)  ` `{  ` `    ``int` `sum = 0, position = 1;  ` `    ``while` `(n > 0)  ` `    ``{  ` ` `  `        ``// if position is odd  ` `        ``if` `(position % 2 == 1)  ` `            ``sum += n % 10;  ` `        ``n = n / 10;  ` `        ``position++;  ` `    ``}  ` ` `  `    ``if` `(sum % k == 0)  ` `        ``return` `true``;  ` `    ``return` `false``;  ` `}  ` ` `  `// Driver code  ` `static` `public` `void` `Main () ` `{ ` `    ``int` `n = 592452;  ` `    ``int` `k = 3;  ` ` `  `    ``if` `(SumDivisible(n, k))  ` `        ``Console.WriteLine(``"YES"``);  ` `    ``else` `        ``Console.WriteLine(``"NO"``);  ` `}  ` `}  ` ` `  `// This code is contributed by Sachin `

## PHP

 ` 0) ` `    ``{  ` ` `  `        ``// if position is odd  ` `        ``if` `(``\$position` `% 2 == 1)  ` `            ``\$sum` `+= ``\$n` `% 10;  ` `        ``\$n` `= (int)``\$n` `/ 10;  ` `        ``\$position``++;  ` `    ``}  ` ` `  `    ``if` `(``\$sum` `% ``\$k` `== 0)  ` `        ``return` `true;  ` `    ``return` `false;  ` `}  ` ` `  `// Driver code  ` `\$n` `= 592452;  ` `\$k` `= 3;  ` ` `  `if` `(SumDivisible(``\$n``, ``\$k``))  ` `    ``echo` `"YES"``;  ` `else` `    ``echo` `"NO"``;  ` ` `  `// This code is contributed  ` `// by Sach_Code ` `?> `

Output:

```YES
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.