Check whether right angled triangle is valid or not for large sides
Given three integers a, b and c as triplets. Check if it is possible to make right angled triangle or not. Print Yes if possible, else No. 10-18 <= a, b, c <= 1018
Examples:
Input: 3 4 5 Output: Yes Explanation: Since 3*3 + 4*4 = 5*5 Hence print "Yes" Input: 8 5 13 Since 8 + 5 < 13 which violates the property of triangle. Hence print "No"
For a right angled triangle to be valid it must satisfies the following criteria:-
- a, b and c should be greater than 0.
- Sum of any two sides of triangle must be greater than the third side.
- Pythagorean Theorem i.e., a2 + b2 = c2.
First two conditions can be easily checked but for third condition we have to take care of overflow. Since a, b and c can be large so we can’t compare them directly unless we use python or BigInteger library in Java. For languages like C and C++, we have to reduce the expression in fraction form.
Before comparing the fraction we need convert them in simplified form by dividing the numerator and denominator by gcd of both of them. Now compare both numerator and denominator of both the fractions of LHS and RHS such that if both would become same then it signifies the valid right angled triangle otherwise not.
C++
// C++ program to check validity of triplets #include <bits/stdc++.h> using namespace std; // Function to check pythagorean triplets bool Triplets( long long a, long long b, long long c) { if (a <= 0 || b <= 0 || c <= 0) return false ; vector< long long > vec{ a, b, c }; sort(vec.begin(), vec.end()); // Re-initialize a, b, c in ascending order a = vec[0], b = vec[1], c = vec[2]; // Check validation of sides of triangle if (a + b <= c) return false ; long long p1 = a, p2 = c - b; // Reduce fraction to simplified form long long div = __gcd(p1, p2); p1 /= div , p2 /= div ; long long q1 = c + b, q2 = a; // Reduce fraction to simplified form div = __gcd(q1, q2); q1 /= div , q2 /= div ; // If fraction are equal return // 'true' else 'false' return (p1 == q1 && p2 == q2); } // Function that will return 'Yes' or 'No' // according to the correction of triplets string checkTriplet( long long a, long long b, long long c) { if (Triplets(a, b, c)) return "Yes" ; else return "No" ; } // Driver code int main() { long long a = 4, b = 3, c = 5; cout << checkTriplet(a, b, c) << endl; a = 8, b = 13, c = 5; cout << checkTriplet(a, b, c) << endl; a = 1200000000000, b = 1600000000000, c = 2000000000000; cout << checkTriplet(a, b, c) << endl; return 0; } |
Java
// Java program to check validity of triplets import java.util.*; class GFG { // Function to check pythagorean triplets static boolean Triplets( long a, long b, long c) { if (a <= 0 || b <= 0 || c <= 0 ) return false ; long []vec = { a, b, c }; Arrays.sort(vec); // Re-initialize a, b, c in ascending order a = vec[ 0 ]; b = vec[ 1 ]; c = vec[ 2 ]; // Check validation of sides of triangle if (a + b <= c) return false ; long p1 = a, p2 = c - b; // Reduce fraction to simplified form long div = __gcd(p1, p2); p1 /= div; p2 /= div; long q1 = c + b, q2 = a; // Reduce fraction to simplified form div = __gcd(q1, q2); q1 /= div; q2 /= div; // If fraction are equal return // 'true' else 'false' return (p1 == q1 && p2 == q2); } // Function that will return 'Yes' or 'No' // according to the correction of triplets static String checkTriplet( long a, long b, long c) { if (Triplets(a, b, c)) return "Yes" ; else return "No" ; } static long __gcd( long a, long b) { if (b == 0 ) return a; return __gcd(b, a % b); } // Driver code public static void main(String[] args) { long a = 4 , b = 3 , c = 5 ; System.out.println(checkTriplet(a, b, c)); a = 8 ; b = 13 ; c = 5 ; System.out.println(checkTriplet(a, b, c)); a = 1200000000000L; b = 1600000000000L; c = 2000000000000L; System.out.println(checkTriplet(a, b, c)); } } // This code is contributed // by Princi Singh |
Python3
# Python3 program to check validity of triplets def Triplets(a, b, c): if (a < = 0 or b < = 0 or c < = 0 ): return False vec = [ a, b, c ] vec.sort() # Re - initialize a, b, c in ascending order a = vec[ 0 ]; b = vec[ 1 ]; c = vec[ 2 ] # Check validation of sides of triangle if (a + b < = c): return False p1 = a; p2 = c - b # Reduce fraction to simplified form div = __gcd(p1, p2) p1 / / = div p2 / / = div q1 = c + b q2 = a # Reduce fraction to simplified form div = __gcd(q1, q2) q1 / / = div q2 / / = div # If fraction are equal return # 'true' else 'false' return (p1 = = q1 and p2 = = q2) # Function that will return 'Yes' or 'No' # according to the correction of triplets def checkTriplet(a, b, c): if (Triplets(a, b, c)): return "Yes" else : return "No" def __gcd(a, b): if (b = = 0 ): return a return __gcd(b, a % b) # Driver code a = 4 b = 3 c = 5 print (checkTriplet(a, b, c)) a = 8 b = 13 c = 5 print (checkTriplet(a, b, c)) a = 1200000000000 b = 1600000000000 c = 2000000000000 print (checkTriplet(a, b, c)) # This code is contributed by ng24_7 |
C#
// C# program to check validity of triplets using System; class GFG { // Function to check pythagorean triplets static Boolean Triplets( long a, long b, long c) { if (a <= 0 || b <= 0 || c <= 0) return false ; long []vec = { a, b, c }; Array.Sort(vec); // Re-initialize a, b, c in ascending order a = vec[0]; b = vec[1]; c = vec[2]; // Check validation of sides of triangle if (a + b <= c) return false ; long p1 = a, p2 = c - b; // Reduce fraction to simplified form long div = __gcd(p1, p2); p1 /= div; p2 /= div; long q1 = c + b, q2 = a; // Reduce fraction to simplified form div = __gcd(q1, q2); q1 /= div; q2 /= div; // If fraction are equal return // 'true' else 'false' return (p1 == q1 && p2 == q2); } // Function that will return 'Yes' or 'No' // according to the correction of triplets static String checkTriplet( long a, long b, long c) { if (Triplets(a, b, c)) return "Yes" ; else return "No" ; } static long __gcd( long a, long b) { if (b == 0) return a; return __gcd(b, a % b); } // Driver code public static void Main(String[] args) { long a = 4, b = 3, c = 5; Console.WriteLine(checkTriplet(a, b, c)); a = 8; b = 13; c = 5; Console.WriteLine(checkTriplet(a, b, c)); a = 1200000000000L; b = 1600000000000L; c = 2000000000000L; Console.WriteLine(checkTriplet(a, b, c)); } } // This code has been contributed by 29AjayKumar |
Javascript
<script> // Javascript program to check validity of triplets // Function to check pythagorean triplets function Triplets(a, b, c) { if (a <= 0 || b <= 0 || c <= 0) return false ; let vec = [ a, b, c ]; vec.sort(); // Re-initialize a, b, c in ascending order a = vec[0]; b = vec[1]; c = vec[2]; // Check validation of sides of triangle if (a + b <= c) return false ; let p1 = a, p2 = c - b; // Reduce fraction to simplified form let div = __gcd(p1, p2); p1 /= div; p2 /= div; let q1 = c + b, q2 = a; // Reduce fraction to simplified form div = __gcd(q1, q2); q1 /= div; q2 /= div; // If fraction are equal return // 'true' else 'false' return (p1 == q1 && p2 == q2); } // Function that will return 'Yes' or 'No' // according to the correction of triplets function checkTriplet(a, b, c){ if (Triplets(a, b, c)) return "Yes" ; else return "No" ; } function __gcd(a, b) { if (b == 0) return a; return __gcd(b, a % b); } // driver program let a = 4, b = 3, c = 5; document.write(checkTriplet(a, b, c) + "<br/>" ); a = 8; b = 13; c = 5; document.write(checkTriplet(a, b, c) + "<br/>" ); a = 1200000000000; b = 1600000000000; c = 2000000000000; document.write(checkTriplet(a, b, c) + "<br/>" ); // This code is contributed by sanjoy_62. </script> |
Output:
Yes No Yes
Time complexity: O(log(M)) where M is the Maximum value among a, b and c.
Auxiliary space: O(1)
This article is contributed by Shubham Bansal. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...