Check whether a number is Emirpimes or not

Given a number ‘n’, check whether it is an emirpimes or not.
An emirpimes(“semiprime” when spelled backwards) derives its definition from the way it is spelt. So, an emirpimes is a number that is a semiprime (product of two prime numbers) itself, and the reversal of its digits gives another new number, which too is a semi prime. Hence, by definition we can conclude that none of the palindrome numbers can be emirpimes, as the reversal of their digits does not give any new number, but forms the same number again.

Examples :

Input : 15
Output : Yes
Explanation : 15 is itself a semi prime number, since it is a product of two prime numbers 3 and 5. The reversal of its digits gives a new number 51, which too is a semi prime, it being the product of two prime numbers, viz., 3 and 17

Input : 49
Output : Yes
Explanation : 49 is itself a semi prime number, since it is a product of two prime numbers(not necessarily distinct) 7 and 7. The reversal of its digits gives a new number 94, which too is a semi prime, it being the product of two prime numbers, viz., 2 and 47

Input : 25
Output : No
Explanation : 25 is itself a semi prime number, since it is a product of two prime numbers(not necessarily distinct) 5 and 5. The reversal of its digits gives a new number 52, which is not a semi prime, it being the product of three and not two prime numbers, viz., 2, 2 and 13

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach :

1. First check whether the entered number is semi prime, itself.
2. If yes, form a number by reversing its digits.
3. Now, compare this number with the initially entered number to ascertain if the number is palindrome or not.
4. If the number is not a palindrome, check whether this new number is also semi prime or not.
5. If yes, then the initially entered number is reported to be an emirpimes.

C++

 // CPP code to check whether // a number is Emirpimes or not #include using namespace std;    // Checking whether a number // is semi-prime or not int checkSemiprime(int num) {     int cnt = 0;     for (int i = 2; cnt < 2 &&                     i * i <= num; ++i)     {         while (num % i == 0)         {             num /= i;                // Increment count of             // prime numbers             ++cnt;         }     }        // If number is still greater than 1, after     // exiting the for loop add it to the count     // variable as it indicates the number is     // a prime number     if (num > 1)         ++cnt;        // Return '1' if count is      // equal to '2' else return '0'     return cnt == 2; }    // Checking whether a number // is emirpimes or not bool isEmirpimes(int n) {     // Number itself is not semiprime.     if (checkSemiprime(n) == false)         return false;        // Finding reverse of n.     int r = 0;     for (int t=n; t!=0; t=t/n)         r = r * 10 + t % 10;        // The definition of emirpimes excludes     // palindromes, hence we do not check     // further, if the number entered is a     // palindrome     if (r == n)         return false;        // Checking whether the reverse of the     // semi prime number entered is also     // a semi prime number or not     return (checkSemiprime(r)); }    // Driver Code int main() {     int n = 15;     if (isEmirpimes(n))     cout << "Yes";     else         cout << "No";     return 0; }

Java

 // Java code to check whether a // number is Emirpimes or not import java.io.*;    class GFG  {            // Checking whether a number     // is semi-prime or not     static boolean checkSemiprime(int num)     {         int cnt = 0;         for (int i = 2; cnt < 2 &&                          i * i <= num; ++i)         {             while (num % i == 0)             {                 num /= i;                        // Increment count of                 // prime numbers                 ++cnt;             }         }                // If number is still greater than 1,         // after exiting the for loop add it          // to the count variable as it indicates         // the number is a prime number         if (num > 1)             ++cnt;                // Return '1' if count is equal         // to '2' else return '0'         return cnt == 2;     }            // Checking whether a number     // is emirpimes or not     static boolean isEmirpimes(int n)     {         // Number itself is not semiprime.         if (checkSemiprime(n) == false)             return false;                // Finding reverse of n.         int r = 0;         for (int t = n; t != 0; t = t / n)             r = r * 10 + t % 10;                // The definition of emirpimes excludes         // palindromes, hence we do not check         // further, if the number entered is a         // palindrome         if (r == n)             return false;                // Checking whether the reverse of the         // semi prime number entered is also         // a semi prime number or not         return (checkSemiprime(r));     }        // Driver Code     public static void main (String[] args)     {         int n = 15;         if (isEmirpimes(n))             System.out.println("Yes");         else             System.out.println("No");     } }    // This code is contributed by Ajit.

Python3

 # Python3 code to check whether  # a number is Emirpimesor not     # Checking whether a number  # is semi-prime or not  def checkSemiprime(num):         cnt = 0;     i = 2;     while (cnt < 2 and (i * i) <= num):                 while (num % i == 0):             num /= i;                 # Increment count of              # prime numbers              cnt += 1;         i += 1;        # If number is still greater than 1,      # after exiting the add it to the      # count variable as it indicates      # the number is a prime number      if (num > 1):          cnt += 1;         # Return '1' if count is equal      # to '2' else return '0'      return cnt == 2;     # Checking whether a number  # is emirpimes or not  def isEmirpimes(n):             # Number itself is not semiprime.      if (checkSemiprime(n) == False):          return False;         # Finding reverse of n.      r = 0;     t = n;     while (t != 0):          r = r * 10 + t % 10;         t = t / n;        # The definition of emirpimes excludes      # palindromes, hence we do not check      # further, if the number entered      # is a palindrome      if (r == n):          return false;         # Checking whether the reverse of the      # semi prime number entered is also      # a semi prime number or not      return (checkSemiprime(r));     # Driver Code  n = 15;  if (isEmirpimes(n)):      print("No");  else:     print("Yes");     # This code is contributed by mits

C#

 // C# code to check whether a // number is Emirpimes or not using System;    class GFG {            // Checking whether a number     // is semi-prime or not     static bool checkSemiprime(int num)     {         int cnt = 0;         for (int i = 2; cnt < 2 &&                          i * i <= num; ++i)         {             while (num % i == 0)             {                 num /= i;                        // Increment count of                 // prime numbers                 ++cnt;             }         }                // If number is still greater than 1,          // after exiting the for loop add it          // to the count variable as it          // indicates the number is a prime number         if (num > 1)             ++cnt;                // Return '1' if count is equal         // to '2' else return '0'         return cnt == 2;     }            // Checking whether a number     // is emirpimes or not     static bool isEmirpimes(int n)     {         // Number itself is not semiprime.         if (checkSemiprime(n) == false)             return false;                // Finding reverse of n.         int r = 0;         for (int t = n; t != 0; t = t / n)             r = r * 10 + t % 10;                // The definition of emirpimes excludes         // palindromes, hence we do not check         // further, if the number entered is a         // palindrome         if (r == n)             return false;                // Checking whether the reverse of the         // semi prime number entered is also         // a semi prime number or not         return (checkSemiprime(r));     }        // Driver Code     public static void Main ()     {         int n = 15;         if (isEmirpimes(n))             Console.WriteLine("Yes");         else             Console.WriteLine("No");     } }    // This code is contributed by anuj_67.

PHP

 1)         ++\$cnt;        // Return '1' if count     // is equal to '2' else     // return '0'     return \$cnt == 2; }    // Checking whether a number // is emirpimes or not function isEmirpimes(\$n) {            // Number itself is     // not semiprime.     if (checkSemiprime(\$n) == false)         return false;        // Finding reverse     // of n.     \$r = 0;     for (\$t = \$n; \$t != 0; \$t = \$t / \$n)          \$r = \$r * 10 + \$t % 10;        // The definition of emirpimes       // excludes palindromes,hence       // we do not check further,      // if the number entered      // is a palindrome     if (\$r == \$n)         return false;        // Checking whether the      // reverse of the     // semi prime number      // entered is also     // a semi prime number      // or not     return (checkSemiprime(\$r)); }        // Driver Code     \$n = 15;     if (isEmirpimes(\$n))            echo "No";     else     echo "Yes";    // This code is contributed by Ajit. ?>

Output :

Yes

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : jit_t, vt_m, Mithun Kumar

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.