Open In App
Related Articles

Check whether given degrees of vertices represent a Graph or Tree

Improve Article
Improve
Save Article
Save
Like Article
Like

Given the number of vertices and the degree of each vertex where vertex numbers are 1, 2, 3,…n. The task is to identify whether it is a graph or a tree. It may be assumed that the graph is Connected. 

Examples:

Input : 5
        2 3 1 1 1
Output : Tree
Explanation : The input array indicates that 
              vertex one has degree 2, vertex
              two has degree 3, vertices 3, 4 
              and 5 have degree 1.  
            1
           / \
          2   3
         / \
        4   5


Input : 3
        2 2 2
Output : Graph      
            1
           / \
          2 - 3

The degree of a vertex is given by the number of edges incident or leaving from it. This can simply be done using the properties of trees like –

  1. Tree is connected and has no cycles while graphs can have cycles.
  2. Tree has exactly n-1 edges while there is no such constraint for graph.
  3. It is given that the input graph is connected. We need at least n-1 edges to connect n nodes.

If we take the sum of all the degrees, each edge will be counted twice. Hence, for a tree with n vertices and n – 1 edges, sum of all degrees should be 2 * (n – 1). Please refer Handshaking Lemma for details. So basically we need to check if sum of all degrees is 2*(n-1) or not. 

Implementation:

C++




// C++ program to check whether input degree
// sequence is graph or tree
#include<bits/stdc++.h>
using namespace std;
 
// Function returns true for tree
// false for graph
bool check(int degree[], int n)
{
    // Find sum of all degrees
    int deg_sum = 0;
    for (int i = 0; i < n; i++)
        deg_sum += degree[i];
 
    // Graph is tree if sum is equal to 2(n-1)
    return (2*(n-1) == deg_sum);
}
 
// Driver program to test above function
int main()
{
    int n = 5;
    int degree[] = {2, 3, 1, 1, 1};
 
    if (check(degree, n))
        cout << "Tree";
    else
        cout << "Graph";
 
    return 0;
}


Java




// Java program to check whether input degree
// sequence is graph or tree
class GFG
{
 
    // Function returns true for tree
    // false for graph
    static boolean check(int degree[], int n)
    {
        // Find sum of all degrees
        int deg_sum = 0;
        for (int i = 0; i < n; i++)
        {
            deg_sum += degree[i];
        }
 
        // Graph is tree if sum is equal to 2(n-1)
        return (2 * (n - 1) == deg_sum);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 5;
        int degree[] = {2, 3, 1, 1, 1};
 
        if (check(degree, n))
        {
            System.out.println("Tree");
        }
        else
        {
            System.out.println("Graph");
        }
    }
}
 
 
// This code has been contributed
// by 29AjayKumar


Python




# Python program to check whether input degree
# sequence is graph or tree
def check(degree, n):
     
    # Find sum of all degrees
    deg_sum = sum(degree)
     
    # It is tree if sum is equal to 2(n-1)
    if (2*(n-1) == deg_sum):
        return True
    else:
        return False
     
#main
n = 5
degree = [2, 3, 1, 1, 1];
if (check(degree, n)):
    print "Tree"
else:
    print "Graph"


C#




// C# program to check whether input
// degree sequence is graph or tree
using System;
 
class GFG
{
 
    // Function returns true for tree
    // false for graph
    static bool check(int[] degree, int n)
    {
        // Find sum of all degrees
        int deg_sum = 0;
        for (int i = 0; i < n; i++)
        {
            deg_sum += degree[i];
        }
 
        // Graph is tree if sum is
        // equal to 2(n-1)
        return (2 * (n - 1) == deg_sum);
    }
 
    // Driver code
    public static void Main()
    {
        int n = 5;
        int[] degree = {2, 3, 1, 1, 1};
 
        if (check(degree, n))
        {
            Console.WriteLine("Tree");
        }
        else
        {
            Console.WriteLine("Graph");
        }
    }
}
 
// This code has been contributed
// by Akanksha Rai


PHP




<?php
// PHP program to check whether input
// degree sequence is graph or tree
 
// Function returns true for tree
// false for graph
function check(&$degree, $n)
{
    // Find sum of all degrees
    $deg_sum = 0;
    for ($i = 0; $i < $n; $i++)
        $deg_sum += $degree[$i];
 
    // Graph is tree if sum is
    // equal to 2(n-1)
    return (2 * ($n - 1) == $deg_sum);
}
 
// Driver Code
$n = 5;
$degree = array(2, 3, 1, 1, 1);
 
if (check($degree, $n))
    echo "Tree";
else
    echo "Graph";
 
// This code is contributed by
// Shivi_Aggarwal
?>


Javascript




// JS program to check whether input degree
// sequence is graph or tree
 
 // Function returns true for tree
// false for graph
function check(degree, n)
{
 
  // Find sum of all degrees
  const deg_sum = degree.reduce((a, b) => a + b, 0);
   
  // Graph is tree if sum is equal to 2(n-1)
  if (2 * (n - 1) === deg_sum) {
    return true;
  } else {
    return false;
  }
}
 
// Driver code
const n = 5;
const degree = [2, 3, 1, 1, 1];
if (check(degree, n)) {
 console.log("Tree");
} else {
 console.log("Graph");
}


Output

Tree

Time Complexity:O(N)

Space Complexity:O(1),since no extra space being used.

If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 21 Mar, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials