Check whether a binary tree is a full binary tree or not | Iterative Approach
Given a binary tree containing n nodes. The problem is to check whether the given binary tree is a full binary tree or not. A full binary tree is defined as a binary tree in which all nodes have either zero or two child nodes. Conversely, there is no node in a full binary tree, which has only one child node.
Examples:
Input : 1 / \ 2 3 / \ 4 5 Output : Yes Input : 1 / \ 2 3 / 4 Output :No
Approach: In the previous post a recursive solution has been discussed. In this post an iterative approach has been followed. Perform iterative level order traversal of the tree using queue. For each node encountered, follow the steps given below:
- If (node->left == NULL && node->right == NULL), it is a leaf node. Discard it and start processing the next node from the queue.
- If (node->left == NULL || node->right == NULL), then it means that only child of node is present. Return false as the binary tree is not a full binary tree.
- Else, push the left and right child’s of the node on to the queue.
If all the node’s from the queue gets processed without returning false, then return true as the binary tree is a full binary tree.
C++
// C++ implementation to check whether a binary // tree is a full binary tree or not #include <bits/stdc++.h> using namespace std; // structure of a node of binary tree struct Node { int data; Node *left, *right; }; // function to get a new node Node* getNode( int data) { // allocate space Node* newNode = (Node*) malloc ( sizeof (Node)); // put in the data newNode->data = data; newNode->left = newNode->right = NULL; return newNode; } // function to check whether a binary tree // is a full binary tree or not bool isFullBinaryTree(Node* root) { // if tree is empty if (!root) return true ; // queue used for level order traversal queue<Node*> q; // push 'root' to 'q' q.push(root); // traverse all the nodes of the binary tree // level by level until queue is empty while (!q.empty()) { // get the pointer to 'node' at front // of queue Node* node = q.front(); q.pop(); // if it is a leaf node then continue if (node->left == NULL && node->right == NULL) continue ; // if either of the child is not null and the // other one is null, then binary tree is not // a full binary tee if (node->left == NULL || node->right == NULL) return false ; // push left and right childs of 'node' // on to the queue 'q' q.push(node->left); q.push(node->right); } // binary tree is a full binary tee return true ; } // Driver program to test above int main() { Node* root = getNode(1); root->left = getNode(2); root->right = getNode(3); root->left->left = getNode(4); root->left->right = getNode(5); if (isFullBinaryTree(root)) cout << "Yes" ; else cout << "No" ; return 0; } |
Java
// Java implementation to check whether a binary // tree is a full binary tree or not import java.util.*; class GfG { // structure of a node of binary tree static class Node { int data; Node left, right; } // function to get a new node static Node getNode( int data) { // allocate space Node newNode = new Node(); // put in the data newNode.data = data; newNode.left = null ; newNode.right = null ; return newNode; } // function to check whether a binary tree // is a full binary tree or not static boolean isFullBinaryTree(Node root) { // if tree is empty if (root == null ) return true ; // queue used for level order traversal Queue<Node> q = new LinkedList<Node> (); // push 'root' to 'q' q.add(root); // traverse all the nodes of the binary tree // level by level until queue is empty while (!q.isEmpty()) { // get the pointer to 'node' at front // of queue Node node = q.peek(); q.remove(); // if it is a leaf node then continue if (node.left == null && node.right == null ) continue ; // if either of the child is not null and the // other one is null, then binary tree is not // a full binary tee if (node.left == null || node.right == null ) return false ; // push left and right childs of 'node' // on to the queue 'q' q.add(node.left); q.add(node.right); } // binary tree is a full binary tee return true ; } // Driver program to test above public static void main(String[] args) { Node root = getNode( 1 ); root.left = getNode( 2 ); root.right = getNode( 3 ); root.left.left = getNode( 4 ); root.left.right = getNode( 5 ); if (isFullBinaryTree(root)) System.out.println( "Yes" ); else System.out.println( "No" ); } } |
Python3
# Python3 program to find deepest # left leaf Binary search Tree # Helper function that allocates a # new node with the given data and # None left and right pairs. class getNode: # Constructor to create a new node def __init__( self , data): self .data = data self .left = None self .right = None # function to check whether a binary # tree is a full binary tree or not def isFullBinaryTree( root) : # if tree is empty if ( not root) : return True # queue used for level order # traversal q = [] # append 'root' to 'q' q.append(root) # traverse all the nodes of the # binary tree level by level # until queue is empty while ( not len (q)): # get the pointer to 'node' # at front of queue node = q[ 0 ] q.pop( 0 ) # if it is a leaf node then continue if (node.left = = None and node.right = = None ): continue # if either of the child is not None # and the other one is None, then # binary tree is not a full binary tee if (node.left = = None or node.right = = None ): return False # append left and right childs # of 'node' on to the queue 'q' q.append(node.left) q.append(node.right) # binary tree is a full binary tee return True # Driver Code if __name__ = = '__main__' : root = getNode( 1 ) root.left = getNode( 2 ) root.right = getNode( 3 ) root.left.left = getNode( 4 ) root.left.right = getNode( 5 ) if (isFullBinaryTree(root)) : print ( "Yes" ) else : print ( "No" ) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10) |
C#
// C# implementation to check whether a binary // tree is a full binary tree or not using System; using System.Collections.Generic; class GfG { // structure of a node of binary tree public class Node { public int data; public Node left, right; } // function to get a new node static Node getNode( int data) { // allocate space Node newNode = new Node(); // put in the data newNode.data = data; newNode.left = null ; newNode.right = null ; return newNode; } // function to check whether a binary tree // is a full binary tree or not static bool isFullBinaryTree(Node root) { // if tree is empty if (root == null ) return true ; // queue used for level order traversal Queue<Node> q = new Queue<Node> (); // push 'root' to 'q' q.Enqueue(root); // traverse all the nodes of the binary tree // level by level until queue is empty while (q.Count!=0) { // get the pointer to 'node' at front // of queue Node node = q.Peek(); q.Dequeue(); // if it is a leaf node then continue if (node.left == null && node.right == null ) continue ; // if either of the child is not null and the // other one is null, then binary tree is not // a full binary tee if (node.left == null || node.right == null ) return false ; // push left and right childs of 'node' // on to the queue 'q' q.Enqueue(node.left); q.Enqueue(node.right); } // binary tree is a full binary tee return true ; } // Driver code public static void Main(String[] args) { Node root = getNode(1); root.left = getNode(2); root.right = getNode(3); root.left.left = getNode(4); root.left.right = getNode(5); if (isFullBinaryTree(root)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code has been contributed by 29AjayKumar |
Javascript
<script> // JavaScript implementation to check whether a binary // tree is a full binary tree or not // A Binary Tree Node class Node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } // function to get a new node function getNode(data) { // allocate space let newNode = new Node(data); return newNode; } // function to check whether a binary tree // is a full binary tree or not function isFullBinaryTree(root) { // if tree is empty if (root == null ) return true ; // queue used for level order traversal let q = []; // push 'root' to 'q' q.push(root); // traverse all the nodes of the binary tree // level by level until queue is empty while (q.length > 0) { // get the pointer to 'node' at front // of queue let node = q[0]; q.shift(); // if it is a leaf node then continue if (node.left == null && node.right == null ) continue ; // if either of the child is not null and the // other one is null, then binary tree is not // a full binary tee if (node.left == null || node.right == null ) return false ; // push left and right childs of 'node' // on to the queue 'q' q.push(node.left); q.push(node.right); } // binary tree is a full binary tee return true ; } let root = getNode(1); root.left = getNode(2); root.right = getNode(3); root.left.left = getNode(4); root.left.right = getNode(5); if (isFullBinaryTree(root)) document.write( "Yes" ); else document.write( "No" ); </script> |
Yes
Time Complexity: O(n).
Auxiliary Space: O(max), where max is the maximum number of nodes at a particular level.
Please Login to comment...