Check whether Array represents a Fibonacci Series or not

Given an array arr[] consisting of N integers, the task is to check whether a Fibonacci series can be formed using all the array elements or not. If possible, print “Yes”. Otherwise, print “No”.

Examples:

Input: arr[] = { 8, 3, 5, 13 }
Output: Yes
Explanation:
Rearrange given array as {3, 5, 8, 13} and these numbers form Fibonacci series.

Input: arr[] = { 2, 3, 5, 11 }
Output: No
Explanation:
The given array elements do not form a Fibonacci series.

Approach:
In order to solve the problem mentioned above, the main idea is to sort the given array. After sorting, check if every element is equal to the sum of the previous 2 elements. If so, then the array elements form a Fibonacci series.



Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to check if the
// elements of a given array
// can form a Fibonacci Series
  
#include <bits/stdc++.h>
using namespace std;
  
// Returns true if a permutation
// of arr[0..n-1] can form a
// Fibonacci Series
bool checkIsFibonacci(int arr[], int n)
{
    if (n == 1 || n == 2)
        return true;
  
    // Sort array
    sort(arr, arr + n);
  
    // After sorting, check if every
    // element is equal to the
    // sum of previous 2 elements
  
    for (int i = 2; i < n; i++)
        if ((arr[i - 1] + arr[i - 2])
            != arr[i])
            return false;
  
    return true;
}
  
// Driver Code
int main()
{
    int arr[] = { 8, 3, 5, 13 };
    int n = sizeof(arr) / sizeof(arr[0]);
  
    if (checkIsFibonacci(arr, n))
        cout << "Yes" << endl;
    else
        cout << "No";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to check if the elements of 
// a given array can form a Fibonacci Series 
import java. util. Arrays;
  
class GFG{
      
// Returns true if a permutation 
// of arr[0..n-1] can form a 
// Fibonacci Series 
public static boolean checkIsFibonacci(int arr[], 
                                       int n) 
    if (n == 1 || n == 2
        return true
      
    // Sort array 
    Arrays.sort(arr);
      
    // After sorting, check if every 
    // element is equal to the sum 
    // of previous 2 elements 
    for(int i = 2; i < n; i++)
    {
       if ((arr[i - 1] + arr[i - 2]) != arr[i]) 
           return false
    
    return true
      
// Driver code
public static void main(String[] args) 
{
    int arr[] = { 8, 3, 5, 13 }; 
    int n = arr.length; 
      
    if (checkIsFibonacci(arr, n)) 
        System.out.println("Yes");
    else
        System.out.println("No"); 
}
}
  
// This code is contributed by divyeshrabadiya07

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to check if the
# elements of a given array
# can form a Fibonacci Series
  
# Returns true if a permutation
# of arr[0..n-1] can form a
# Fibonacci Series
def checkIsFibonacci(arr, n) :
  
    if (n == 1 or n == 2) :
        return True;
  
    # Sort array
    arr.sort()
  
    # After sorting, check if every
    # element is equal to the
    # sum of previous 2 elements
  
    for i in range(2, n) :
        if ((arr[i - 1] + 
             arr[i - 2])!= arr[i]) :
            return False;
  
    return True;
  
# Driver Code
if __name__ == "__main__" :
  
    arr = [ 8, 3, 5, 13 ];
    n = len(arr);
  
    if (checkIsFibonacci(arr, n)) :
        print("Yes");
    else :
        print("No");
  
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to check if the elements of 
// a given array can form a fibonacci series 
using System;
  
class GFG{ 
      
// Returns true if a permutation 
// of arr[0..n-1] can form a 
// fibonacci series 
public static bool checkIsFibonacci(int []arr, 
                                    int n) 
    if (n == 1 || n == 2) 
        return true
          
    // Sort array 
    Array.Sort(arr); 
          
    // After sorting, check if every 
    // element is equal to the sum 
    // of previous 2 elements 
    for(int i = 2; i < n; i++) 
    
       if ((arr[i - 1] + arr[i - 2]) != arr[i]) 
           return false
    
    return true
          
// Driver code 
public static void Main(string[] args) 
    int []arr = { 8, 3, 5, 13 }; 
    int n = arr.Length; 
          
    if (checkIsFibonacci(arr, n)) 
        Console.WriteLine("Yes"); 
    else
        Console.WriteLine("No"); 
  
// This code is contributed by AnkitRai01

chevron_right


Output:

Yes

Time Complexity: O(N Log N)

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.