Skip to content
Related Articles

Related Articles

Improve Article

Check whether Array represents a Fibonacci Series or not

  • Last Updated : 03 May, 2021

Given an array arr[] consisting of N integers, the task is to check whether a Fibonacci series can be formed using all the array elements or not. If possible, print “Yes”. Otherwise, print “No”.
Examples: 
 

Input: arr[] = { 8, 3, 5, 13 } 
Output: Yes 
Explanation: 
Rearrange given array as {3, 5, 8, 13} and these numbers form Fibonacci series.
Input: arr[] = { 2, 3, 5, 11 } 
Output: No 
Explanation: 
The given array elements do not form a Fibonacci series. 
 

 

Approach: 
In order to solve the problem mentioned above, the main idea is to sort the given array. After sorting, check if every element is equal to the sum of the previous 2 elements. If so, then the array elements form a Fibonacci series.
Below is the implementation of the above approach:
 

C++




// C++ program to check if the
// elements of a given array
// can form a Fibonacci Series
 
#include <bits/stdc++.h>
using namespace std;
 
// Returns true if a permutation
// of arr[0..n-1] can form a
// Fibonacci Series
bool checkIsFibonacci(int arr[], int n)
{
    if (n == 1 || n == 2)
        return true;
 
    // Sort array
    sort(arr, arr + n);
 
    // After sorting, check if every
    // element is equal to the
    // sum of previous 2 elements
 
    for (int i = 2; i < n; i++)
        if ((arr[i - 1] + arr[i - 2])
            != arr[i])
            return false;
 
    return true;
}
 
// Driver Code
int main()
{
    int arr[] = { 8, 3, 5, 13 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    if (checkIsFibonacci(arr, n))
        cout << "Yes" << endl;
    else
        cout << "No";
 
    return 0;
}

Java




// Java program to check if the elements of
// a given array can form a Fibonacci Series
import java. util. Arrays;
 
class GFG{
     
// Returns true if a permutation
// of arr[0..n-1] can form a
// Fibonacci Series
public static boolean checkIsFibonacci(int arr[],
                                       int n)
{
    if (n == 1 || n == 2)
        return true;
     
    // Sort array
    Arrays.sort(arr);
     
    // After sorting, check if every
    // element is equal to the sum
    // of previous 2 elements
    for(int i = 2; i < n; i++)
    {
       if ((arr[i - 1] + arr[i - 2]) != arr[i])
           return false;
    }
    return true;
}
     
// Driver code
public static void main(String[] args)
{
    int arr[] = { 8, 3, 5, 13 };
    int n = arr.length;
     
    if (checkIsFibonacci(arr, n))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
 
// This code is contributed by divyeshrabadiya07

Python3




# Python3 program to check if the
# elements of a given array
# can form a Fibonacci Series
 
# Returns true if a permutation
# of arr[0..n-1] can form a
# Fibonacci Series
def checkIsFibonacci(arr, n) :
 
    if (n == 1 or n == 2) :
        return True;
 
    # Sort array
    arr.sort()
 
    # After sorting, check if every
    # element is equal to the
    # sum of previous 2 elements
 
    for i in range(2, n) :
        if ((arr[i - 1] +
             arr[i - 2])!= arr[i]) :
            return False;
 
    return True;
 
# Driver Code
if __name__ == "__main__" :
 
    arr = [ 8, 3, 5, 13 ];
    n = len(arr);
 
    if (checkIsFibonacci(arr, n)) :
        print("Yes");
    else :
        print("No");
 
# This code is contributed by AnkitRai01

C#




// C# program to check if the elements of
// a given array can form a fibonacci series
using System;
 
class GFG{
     
// Returns true if a permutation
// of arr[0..n-1] can form a
// fibonacci series
public static bool checkIsFibonacci(int []arr,
                                    int n)
{
    if (n == 1 || n == 2)
        return true;
         
    // Sort array
    Array.Sort(arr);
         
    // After sorting, check if every
    // element is equal to the sum
    // of previous 2 elements
    for(int i = 2; i < n; i++)
    {
       if ((arr[i - 1] + arr[i - 2]) != arr[i])
           return false;
    }
    return true;
}
         
// Driver code
public static void Main(string[] args)
{
    int []arr = { 8, 3, 5, 13 };
    int n = arr.Length;
         
    if (checkIsFibonacci(arr, n))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
 
// Javascript program to check if the elements of
// a given array can form a Fibonacci Series
 
    // Returns true if a permutation
    // of arr[0..n-1] can form a
    // Fibonacci Series
    function checkIsFibonacci(arr , n)
    {
        if (n == 1 || n == 2)
            return true;
 
        // Sort array
        arr.sort((a, b) => a - b);
 
        // After sorting, check if every
        // element is equal to the sum
        // of previous 2 elements
        for (i = 2; i < n; i++) {
            if ((arr[i - 1] + arr[i - 2]) != arr[i])
                return false;
        }
        return true;
    }
 
    // Driver code
     
        var arr = [ 8, 3, 5, 13 ];
        var n = arr.length;
 
        if (checkIsFibonacci(arr, n))
            document.write("Yes");
        else
            document.write("No");
 
// This code contributed by umadevi9616
 
</script>
Output: 



Yes

 

Time Complexity: O(N Log N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :