Skip to content
Related Articles

Related Articles

Improve Article

Check whether all the bits are unset in the given range

  • Last Updated : 28 Apr, 2021

Given a non-negative number n and two values l and r. The problem is to check whether all the bits are unset or not in the range l to r in the binary representation of n. The bits are numbered from right to left, i.e., the least significant bit is considered to be at first position. 
Constraint: 1 <= l <= r <= number of bits in the binary representation of n.
Examples: 
 

Input : n = 17, l = 2, r = 4
Output : Yes
(17)10 = (10001)2
The bits in the range 2 to 4 are all unset.

Input : n = 39, l = 4, r = 6
Output : No
(39)10 = (100111)2
The bits in the range 4 to 6 are all not unset.

Approach: Following are the steps:
 

  1. Calculate num = ((1 << r) – 1) ^ ((1 << (l-1)) – 1). This will produce a number num having r number of bits and bits in the range l to r are the only set bits.
  2. Calculate new_num = n & num.
  3. If new_num == 0, return “Yes” (all bits are unset in the given range).
  4. Else return “No” (all bits are not unset in the given range).

 

C++




// C++ implementation to check whether all the bits
// are unset in the given range or not
#include <bits/stdc++.h>
 
using namespace std;
 
// function to check whether all the bits
// are unset in the given range or not
bool allBitsSetInTheGivenRange(unsigned int n,
                               unsigned int l, unsigned int r)
{
    // calculating a number 'num' having 'r'
    // number of bits and bits in the range l
    // to r are the only set bits
    int num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
 
    // new number which could only have one or more
    // set bits in the range l to r and nowhere else
    int new_num = n & num;
 
    // if true, then all bits are unset
    // in the given range
    if (new_num == 0)
        return true;
 
    // else all bits are not unset
    // in the given range
    return false;
}
 
// Driver program to test above
int main()
{
    unsigned int n = 17;
    unsigned int l = 2, r = 4;
    if (allBitsSetInTheGivenRange(n, l, r))
        cout << "Yes";
    else
        cout << "No";
    return 0;
}

Java




// Java implementation to check
// whether all the bits are
// unset in the given range or not
class GFG
{
     
// function to check whether
// all the bits are unset in
// the given range or not
static boolean allBitsSetInTheGivenRange(int n,
                                         int l,
                                         int r)
{
    // calculating a number 'num'
    // having 'r' number of bits
    // and bits in the range l
    // to r are the only set bits
    int num = ((1 << r) - 1) ^
              ((1 << (l - 1)) - 1);
 
    // new number which could only
    // have one or more set bits in
    // the range l to r and nowhere else
    int new_num = n & num;
 
    // if true, then all bits are
    // unset in the given range
    if (new_num == 0)
        return true;
 
    // else all bits are not
    // unset in the given range
    return false;
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 17;
    int l = 2, r = 4;
    if (allBitsSetInTheGivenRange(n, l, r))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
 
// This code is contributed
// by Smitha

Python3




# Python3 implementation to
# check whether all the bits
# are unset in the given
# range or not
 
# function to check whether
# all the bits are unset in
# the given range or not
def allBitsSetInTheGivenRange(n, l, r):
 
    # calculating a number 'num'
    # having 'r' number of bits
    # and bits in the range l
    # to r are the only set bits
    num = (((1 << r) - 1) ^
           ((1 << (l - 1)) - 1))
 
    # new number which could only
    # have one or more set bits in
    # the range l to r and nowhere else
    new_num = n & num
 
    # if true, then all bits are
    # unset in the given range
    if (new_num == 0):
        return True
 
    # else all bits are not
    # unset in the given range
    return false
 
# Driver Code
n = 17
l = 2
r = 4
if (allBitsSetInTheGivenRange(n, l, r)):
    print("Yes")
else:
    print("No")
 
# This code is contributed
# by Smitha

C#




// C# implementation to check
// whether all the bits are
// unset in the given range or not
using System;
 
class GFG
{
     
// function to check whether
// all the bits are unset in
// the given range or not
static bool allBitsSetInTheGivenRange(int n,
                                      int l,
                                      int r)
{
    // calculating a number 'num'
    // having 'r' number of bits
    // and bits in the range l
    // to r are the only set bits
    int num = ((1 << r) - 1) ^
              ((1 << (l - 1)) - 1);
 
    // new number which could 
    // only have one or more
    // set bits in the range
    // l to r and nowhere else
    int new_num = n & num;
 
    // if true, then all
    // bits are unset
    // in the given range
    if (new_num == 0)
        return true;
 
    // else all bits are not
    // unset in the given range
    return false;
}
 
// Driver Code
public static void Main()
{
    int n = 17;
    int l = 2, r = 4;
    if (allBitsSetInTheGivenRange(n, l, r))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed
// by Smitha

PHP




<?php
// PHP implementation to check
// whether all the bits are
// unset in the given range or not
 
// function to check whether
// all the bits are unset in
// the given range or not
function allBitsSetInTheGivenRange($n, $l, $r)
{
    // calculating a number 'num'
    // having 'r' number of bits
    // and bits in the range l
    // to r are the only set bits
    $num = ((1 << $r) - 1) ^
           ((1 << ($l - 1)) - 1);
 
    // new number which could only
    // have one or more set bits in
    // the range l to r and nowhere else
    $new_num = $n & $num;
 
    // if true, then all bits are
    // unset in the given range
    if ($new_num == 0)
        return true;
 
    // else all bits are not unset
    // in the given range
    return false;
}
 
// Driver Code
$n = 17;
$l = 2;
$r = 4;
if (allBitsSetInTheGivenRange($n, $l, $r))
    echo "Yes";
else
    echo "No";
     
// This code is contributed by Smitha
?>

Javascript




<script>
 
// Javascript implementation to
// check whether all the bits
// are unset in the given range or not
 
// function to check whether all the bits
// are unset in the given range or not
function allBitsSetInTheGivenRange(n, l, r)
{
    // calculating a number 'num' having 'r'
    // number of bits and bits in the range l
    // to r are the only set bits
    let num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
 
    // new number which could only have one or more
    // set bits in the range l to r and nowhere else
    let new_num = n & num;
 
    // if true, then all bits are unset
    // in the given range
    if (new_num == 0)
        return true;
 
    // else all bits are not unset
    // in the given range
    return false;
}
 
// Driver program to test above
    let n = 17;
    let l = 2, r = 4;
    if (allBitsSetInTheGivenRange(n, l, r))
        document.write("Yes");
    else
        document.write("No");
 
</script>

Output:  

Yes

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :