Skip to content
Related Articles

Related Articles

Improve Article
Check whether a subsequence exists with sum equal to k if arr[i]> 2*arr[i-1]
  • Difficulty Level : Medium
  • Last Updated : 29 Apr, 2021

Given a sorted array of positive integers where arr[i] > 2*arr[i-1], check whether a sub sequence exists whose sum is equal to k.
Examples: 
 

Input : arr[]={ 1, 3, 7, 15, 31}, K=18 
Output :True 
A[1] + A[3] = 3 + 15 = 18 
We found a subsequence whose sum is 18 
Input :arr[]={ 1, 3, 7, 15, 31}, K=20 
Output :False 
No subsequence can be found with sum 20 
 

 

Naive Solution: The basic solution is to check for all the 2^n possible combinations and check if there is any subsequence whose sum is equal to K. This process will not work for higher values of N, N>20. 
Time Complexity: O(2^N) 
Efficient Solution: We are given arr[i] >2*arr[i-1] so we can say that arr[i] > ( arr[i-1] + arr[i-2] + …+ arr[2] + arr[1] + arr[0] ).
Let us assume that arr[i] <= K ( arr[i-1] + arr[i-2] + …+ arr[2] + arr[1] + arr[0] ) ), so we have to include arr[i] in the set . So, we have to traverse the array in descending order and when we find arr[i]<=k, we will include arr[i] in the set and subtract arr[i] from K and continue the loop until value of K is equal to zero.
If the value of K is zero then there is a subsequence else not. 
Below is the Implementation of above approach: 
 

C++




// C++ implementation of above approach
#include <iostream>
using namespace std;
 
// Function to check whether sum of any set
// of the array element is equal
// to k or not
bool CheckForSequence(int arr[], int n, int k)
{
    // Traverse the array from end
    // to start
    for (int i = n - 1; i >= 0; i--) {
        // if k is greater than
        // arr[i] then subtract
        // it from k
        if (k >= arr[i])
            k -= arr[i];
    }
 
    // If there is any subsequence
    // whose sum is equal to k
    if (k != 0)
        return false;
    else
        return true;
}
 
// Driver code
int main()
{
    int A[] = { 1, 3, 7, 15, 31 };
    int n = sizeof(A) / sizeof(int);
    cout << (CheckForSequence(A, n, 18)
                 ? "True": "False") << endl;
    return 0;
}

Java




// Java implementation of above approach
import java.io.*;
 
class GFG
{
     
// Function to check whether
// sum of any set of the array element
// is equal to k or not
static boolean CheckForSequence(int arr[],
                                int n, int k)
{
    // Traverse the array from end
    // to start
    for (int i = n - 1; i >= 0; i--)
    {
        // if k is greater than
        // arr[i] then subtract
        // it from k
        if (k >= arr[i])
            k -= arr[i];
    }
 
    // If there is any subsequence
    // whose sum is equal to k
    if (k != 0)
        return false;
    else
        return true;
}
 
// Driver code
public static void main (String[] args)
{
 
    int A[] = { 1, 3, 7, 15, 31 };
    int n = A.length;
    System.out.println(CheckForSequence(A, n, 18) ?
                                            "True": "False");
}
}
 
// This code is contributed by jit_t

Python3




# Python3 implementation of above approach
 
# Function to check whether sum of any set
# of the array element is equal
# to k or not
def CheckForSequence(arr, n, k) :
 
    # Traverse the array from end
    # to start
    for i in range(n - 1, -1, -1) :
        # if k is greater than
        # arr[i] then subtract
        # it from k
        if (k >= arr[i]) :
            k -= arr[i];
 
    # If there is any subsequence
    # whose sum is equal to k
    if (k != 0) :
        return False;
    else :
        return True;
 
# Driver code
if __name__ == "__main__" :
 
    A = [ 1, 3, 7, 15, 31 ];
    n = len(A);
     
    if (CheckForSequence(A, n, 18)) :
        print(True)
    else :
        print(False)
         
# This code is contributed by AnkitRai01

C#




// C# implementation of above approach
using System;
 
class GFG
{
     
// Function to check whether
// sum of any set of the array element
// is equal to k or not
static bool CheckForSequence(int []arr,
                                int n, int k)
{
    // Traverse the array from end
    // to start
    for (int i = n - 1; i >= 0; i--)
    {
        // if k is greater than
        // arr[i] then subtract
        // it from k
        if (k >= arr[i])
            k -= arr[i];
    }
 
    // If there is any subsequence
    // whose sum is equal to k
    if (k != 0)
        return false;
    else
        return true;
}
 
// Driver code
public static void Main ()
{
 
    int []A = { 1, 3, 7, 15, 31 };
    int n = A.Length;
    Console.WriteLine(CheckForSequence(A, n, 18) ?
                                            "True": "False");
}
}
 
// This code is contributed by anuj_67..

Javascript




<script>
// Javascript program to implement the above approach
 
// Function to check whether sum of any set
// of the array element is equal
// to k or not
function CheckForSequence( arr,n,k)
{
   // Traverse the array from end
    // to start
    for (var i = n - 1; i >= 0; i--) {
        // if k is greater than
        // arr[i] then subtract
        // it from k
        if (k >= arr[i])
            k -= arr[i];
    }
 
    // If there is any subsequence
    // whose sum is equal to k
    if (k != 0)
        return false;
    else
        return true;
}
 
var A = [ 1, 3, 7, 15, 31 ];
var n = A.length;
document.write( (CheckForSequence(A, n, 18) ? "True": "False") +"<br>");
 
//This code is contributed by SoumikModnal
</script>
Output: 
True

 

Time Complexity : O(N) 
 

Attention reader! Don’t stop learning now. Get hold of all the important Comcompetitivepetitve Programming concepts with the Competitive Programming Live  course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :