Related Articles

# Check whether a number can be represented as sum of K distinct positive integers

• Difficulty Level : Medium
• Last Updated : 08 Apr, 2021

Given two integers N and K, the task is to check whether N can be represented as sum of K distinct positive integers.

Examples:

Input: N = 12, K = 4
Output: Yes
N = 1 + 2 + 4 + 5 = 12 (12 as sum of 4 distinct integers)

Input: N = 8, K = 4
Output: No

Approach: Consider the series 1 + 2 + 3 + … + K which has exactly K distinct integers with minimum possible sum i.e. Sum = (K * (K – 1)) / 2. Now, if N < Sum then it is not possible to represent N as the sum of K distinct positive integers but if N ≥ Sum then any integer say X ≥ 0 can be added to Sum to generate the sum equal to N i.e. 1 + 2 + 3 + … + (K – 1) + (K + X) ensuring that there are exactly K distinct positive integers.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function that returns true if n``// can be represented as the sum of``// exactly k distinct positive integers``bool` `solve(``int` `n, ``int` `k)``{``    ``// If n can be represented as``    ``// 1 + 2 + 3 + ... + (k - 1) + (k + x)``    ``if` `(n >= (k * (k + 1)) / 2) {``        ``return` `true``;``    ``}` `    ``return` `false``;``}` `// Driver code``int` `main()``{``    ``int` `n = 12, k = 4;` `    ``if` `(solve(n, k))``        ``cout << ``"Yes"``;``    ``else``        ``cout << ``"No"``;` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.io.*;` `class` `GFG {` `    ``// Function that returns true if n``    ``// can be represented as the sum of``    ``// exactly k distinct positive integers``    ``static` `boolean` `solve(``int` `n, ``int` `k)``    ``{``        ``// If n can be represented as``        ``// 1 + 2 + 3 + ... + (k - 1) + (k + x)``        ``if` `(n >= (k * (k + ``1``)) / ``2``) {``            ``return` `true``;``        ``}` `        ``return` `false``;``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `n = ``12``, k = ``4``;` `        ``if` `(solve(n, k))``            ``System.out.println(``"Yes"``);``        ``else``            ``System.out.println(``"No"``);``    ``}``}` `// This code is contributed by anuj_67..`

## Python3

 `# Python 3 implementation of the approach` `# Function that returns true if n``# can be represented as the sum of``# exactly k distinct positive integers``def` `solve(n,k):``    ``# If n can be represented as``    ``# 1 + 2 + 3 + ... + (k - 1) + (k + x)``    ``if` `(n >``=` `(k ``*` `(k ``+` `1``)) ``/``/` `2``):``        ``return` `True` `    ``return` `False` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ``n ``=` `12``    ``k ``=` `4` `    ``if` `(solve(n, k)):``        ``print``(``"Yes"``)``    ``else``:``        ``print``(``"No"``)` `# This code is contributed by``# Surendra_Gangwar`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{``    ``// Function that returns true if n``    ``// can be represented as the sum of``    ``// exactly k distinct positive integers``    ``static` `bool` `solve(``int` `n, ``int` `k)``    ``{``        ``// If n can be represented as``        ``// 1 + 2 + 3 + ... + (k - 1) + (k + x)``        ``if` `(n >= (k * (k + 1)) / 2) {``            ``return` `true``;``        ``}` `        ``return` `false``;``    ``}` `    ``// Driver code``    ``static` `public` `void` `Main ()``    ``{``        ``int` `n = 12, k = 4;` `        ``if` `(solve(n, k))``            ``Console.WriteLine(``"Yes"``);``        ``else``            ``Console.WriteLine(``"No"``);``    ``}``}` `// This code is contributed by ajit.`

## PHP

 `= (``\$k` `* (``\$k` `+ 1)) / 2) {``        ``return` `true;``    ``}` `    ``return` `false;``}` `// Driver code` `\$n` `= 12;``\$k` `= 4;` `if` `(solve(``\$n``, ``\$k``))``    ``echo`  `"Yes"``;``else``    ``echo`  `"No"``;` `// This code is contributed by ihritik` `?>`

## Javascript

 ``
Output:
`Yes`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up