Given a Binary Tree, write a function to check whether the given Binary Tree is a prefect Binary Tree or not.
A Binary tree is Perfect Binary Tree in which all internal nodes have two children and all leaves are at same level.
Examples:
The following tree is a perfect binary tree
10 / \ 20 30 / \ / \ 40 50 60 70 18 / \ 15 30
The following tree is not a perfect binary tree
1 / \ 2 3 \ / \ 4 5 6
A Perfect Binary Tree of height h (where height is number of nodes on path from root to leaf) has 2h – 1 nodes.
Below is an idea to check whether a given Binary Tree is perfect or not.
- Find depth of any node (in below tree we find depth of leftmost node). Let this depth be d.
- Now recursively traverse the tree and check for following two conditions.
- Every internal node should have both children non-empty
- All leaves are at depth ‘d’
C++
// C++ program to check whether a given // Binary Tree is Perfect or not #include<bits/stdc++.h> /* Tree node structure */ struct Node { int key; struct Node *left, *right; }; // Returns depth of leftmost leaf. int findADepth(Node *node) { int d = 0; while (node != NULL) { d++; node = node->left; } return d; } /* This function tests if a binary tree is perfect or not. It basically checks for two things : 1) All leaves are at same level 2) All internal nodes have two children */ bool isPerfectRec( struct Node* root, int d, int level = 0) { // An empty tree is perfect if (root == NULL) return true ; // If leaf node, then its depth must be same as // depth of all other leaves. if (root->left == NULL && root->right == NULL) return (d == level+1); // If internal node and one child is empty if (root->left == NULL || root->right == NULL) return false ; // Left and right subtrees must be perfect. return isPerfectRec(root->left, d, level+1) && isPerfectRec(root->right, d, level+1); } // Wrapper over isPerfectRec() bool isPerfect(Node *root) { int d = findADepth(root); return isPerfectRec(root, d); } /* Helper function that allocates a new node with the given key and NULL left and right pointer. */ struct Node *newNode( int k) { struct Node *node = new Node; node->key = k; node->right = node->left = NULL; return node; } // Driver Program int main() { struct Node* root = NULL; root = newNode(10); root->left = newNode(20); root->right = newNode(30); root->left->left = newNode(40); root->left->right = newNode(50); root->right->left = newNode(60); root->right->right = newNode(70); if (isPerfect(root)) printf ( "Yes\n" ); else printf ( "No\n" ); return (0); } |
Java
// Java program to check whether a given // Binary Tree is Perfect or not class GfG { /* Tree node structure */ static class Node { int key; Node left, right; } // Returns depth of leftmost leaf. static int findADepth(Node node) { int d = 0 ; while (node != null ) { d++; node = node.left; } return d; } /* This function tests if a binary tree is perfect or not. It basically checks for two things : 1) All leaves are at same level 2) All internal nodes have two children */ static boolean isPerfectRec(Node root, int d, int level) { // An empty tree is perfect if (root == null ) return true ; // If leaf node, then its depth must be same as // depth of all other leaves. if (root.left == null && root.right == null ) return (d == level+ 1 ); // If internal node and one child is empty if (root.left == null || root.right == null ) return false ; // Left and right subtrees must be perfect. return isPerfectRec(root.left, d, level+ 1 ) && isPerfectRec(root.right, d, level+ 1 ); } // Wrapper over isPerfectRec() static boolean isPerfect(Node root) { int d = findADepth(root); return isPerfectRec(root, d, 0 ); } /* Helper function that allocates a new node with the given key and NULL left and right pointer. */ static Node newNode( int k) { Node node = new Node(); node.key = k; node.right = null ; node.left = null ; return node; } // Driver Program public static void main(String args[]) { Node root = null ; root = newNode( 10 ); root.left = newNode( 20 ); root.right = newNode( 30 ); root.left.left = newNode( 40 ); root.left.right = newNode( 50 ); root.right.left = newNode( 60 ); root.right.right = newNode( 70 ); if (isPerfect(root) == true ) System.out.println( "Yes" ); else System.out.println( "No" ); } } |
Python3
# Python3 program to check whether a # given Binary Tree is Perfect or not # Helper class that allocates a new # node with the given key and None # left and right pointer. class newNode: def __init__( self , k): self .key = k self .right = self .left = None # Returns depth of leftmost leaf. def findADepth(node): d = 0 while (node ! = None ): d + = 1 node = node.left return d # This function tests if a binary tree # is perfect or not. It basically checks # for two things : # 1) All leaves are at same level # 2) All internal nodes have two children def isPerfectRec(root, d, level = 0 ): # An empty tree is perfect if (root = = None ): return True # If leaf node, then its depth must # be same as depth of all other leaves. if (root.left = = None and root.right = = None ): return (d = = level + 1 ) # If internal node and one child is empty if (root.left = = None or root.right = = None ): return False # Left and right subtrees must be perfect. return (isPerfectRec(root.left, d, level + 1 ) and isPerfectRec(root.right, d, level + 1 )) # Wrapper over isPerfectRec() def isPerfect(root): d = findADepth(root) return isPerfectRec(root, d) # Driver Code if __name__ = = '__main__' : root = None root = newNode( 10 ) root.left = newNode( 20 ) root.right = newNode( 30 ) root.left.left = newNode( 40 ) root.left.right = newNode( 50 ) root.right.left = newNode( 60 ) root.right.right = newNode( 70 ) if (isPerfect(root)): print ( "Yes" ) else : print ( "No" ) # This code is contributed by pranchalK |
C#
// C# program to check whether a given // Binary Tree is Perfect or not using System; class GfG { /* Tree node structure */ class Node { public int key; public Node left, right; } // Returns depth of leftmost leaf. static int findADepth(Node node) { int d = 0; while (node != null ) { d++; node = node.left; } return d; } /* This function tests if a binary tree is perfect or not. It basically checks for two things : 1) All leaves are at same level 2) All internal nodes have two children */ static bool isPerfectRec(Node root, int d, int level) { // An empty tree is perfect if (root == null ) return true ; // If leaf node, then its depth must be same as // depth of all other leaves. if (root.left == null && root.right == null ) return (d == level+1); // If internal node and one child is empty if (root.left == null || root.right == null ) return false ; // Left and right subtrees must be perfect. return isPerfectRec(root.left, d, level+1) && isPerfectRec(root.right, d, level+1); } // Wrapper over isPerfectRec() static bool isPerfect(Node root) { int d = findADepth(root); return isPerfectRec(root, d, 0); } /* Helper function that allocates a new node with the given key and NULL left and right pointer. */ static Node newNode( int k) { Node node = new Node(); node.key = k; node.right = null ; node.left = null ; return node; } // Driver code public static void Main() { Node root = null ; root = newNode(10); root.left = newNode(20); root.right = newNode(30); root.left.left = newNode(40); root.left.right = newNode(50); root.right.left = newNode(60); root.right.right = newNode(70); if (isPerfect(root) == true ) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } /* This code is contributed by Rajput-Ji*/ |
Output:
Yes
Time complexity : O(n)
This article is contributed by Nikhil Papisetty. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.