Open In App
Related Articles

Check for star graph

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

You are given an n * n matrix which represents a graph with n-vertices, check whether the input matrix represents a star graph or not.

Example: 

Input : Mat[][] = {{0, 1, 0},
                   {1, 0, 1},
                   {0, 1, 0}}
Output : Star graph

Input : Mat[][] = {{0, 1, 0},
                   {1, 1, 1},
                   {0, 1, 0}}
Output : Not a Star graph


Star graph: Star graph is a special type of graph in which n-1 vertices have degree 1 and a single vertex have degree n – 1. This looks like n – 1 vertex is connected to a single central vertex. A star graph with total n – vertex is termed as Sn.
Here is an illustration for the star graph : 
 

Check for star graph


Approach: Just traverse whole matrix and record the number of vertices having degree 1 and degree n-1. If number of vertices having degree 1 is n-1 and number of vertex having degree n-1 is 1 then our graph should be a star graph other-wise it should be not. 

Note:

  • For S1, there must be only one vertex with no edges.
  • For S2, there must be two vertices each with degree one or can say, both are connected by a single edge.
  • For Sn (n>2) simply check the above-explained criteria.

Implementation:

C++

// CPP to find whether given graph is star or not
#include<bits/stdc++.h>
using namespace std;
 
// define the size of incidence matrix
#define size 4
 
// function to find star graph
bool checkStar(int mat[][size])
{
    // initialize number of vertex
    // with deg 1 and n-1
    int vertexD1 = 0, vertexDn_1 = 0;
 
    // check for S1
    if (size == 1)
        return (mat[0][0] == 0);
     
    // check for S2
    if (size == 2)   
       return (mat[0][0] == 0 && mat[0][1] == 1 &&
               mat[1][0] == 1 && mat[1][1] == 0 );
 
    // check for Sn (n>2)
    for (int i = 0; i < size; i++)
    {
        int degreeI = 0;
        for (int j = 0; j < size; j++)
            if (mat[i][j])
                degreeI++;
 
        if (degreeI == 1)
            vertexD1++;
        else if (degreeI == size-1)
            vertexDn_1++;
    }
     
    return (vertexD1 == (size-1) &&
            vertexDn_1 == 1);
}
 
// driver code
int main()
{
    int mat[size][size] = { {0, 1, 1, 1},
                            {1, 0, 0, 0},
                            {1, 0, 0, 0},
                            {1, 0, 0, 0}};
 
    checkStar(mat) ? cout << "Star Graph" :
                     cout << "Not a Star Graph";
    return 0;
}

                    

Java

// Java program to find whether
// given graph is star or not
import java.io.*;
 
class GFG
{
    // define the size of
    // incidence matrix
    static int size = 4;
     
    // function to find
    // star graph
    static boolean checkStar(int mat[][])
    {
        // initialize number of
        // vertex with deg 1 and n-1
        int vertexD1 = 0,
            vertexDn_1 = 0;
     
        // check for S1
        if (size == 1)
            return (mat[0][0] == 0);
         
        // check for S2
        if (size == 2)
        return (mat[0][0] == 0 &&
                mat[0][1] == 1 &&
                mat[1][0] == 1 &&
                mat[1][1] == 0);
     
        // check for Sn (n>2)
        for (int i = 0; i < size; i++)
        {
            int degreeI = 0;
            for (int j = 0; j < size; j++)
                if (mat[i][j] == 1)
                    degreeI++;
     
            if (degreeI == 1)
                vertexD1++;
            else if (degreeI == size - 1)
                vertexDn_1++;
        }
         
        return (vertexD1 == (size - 1) &&
                vertexDn_1 == 1);
    }
     
    // Driver code
    public static void main(String args[])
    {
        int mat[][] = {{0, 1, 1, 1},
                       {1, 0, 0, 0},
                       {1, 0, 0, 0},
                       {1, 0, 0, 0}};
     
        if (checkStar(mat))
            System.out.print("Star Graph");
        else
            System.out.print("Not a Star Graph");
    }
}
 
// This code is contributed by
// Manish Shaw(manishshaw1)

                    

Python3

# Python to find whether
# given graph is star
# or not
 
# define the size
# of incidence matrix
size = 4
 
# def to
# find star graph
def checkStar(mat) :
 
    global size
     
    # initialize number of
    # vertex with deg 1 and n-1
    vertexD1 = 0
    vertexDn_1 = 0
 
    # check for S1
    if (size == 1) :
        return (mat[0][0] == 0)
     
    # check for S2
    if (size == 2) :
        return (mat[0][0] == 0 and
                mat[0][1] == 1 and
                mat[1][0] == 1 and
                mat[1][1] == 0)
 
    # check for Sn (n>2)
    for i in range(0, size) :
 
        degreeI = 0
        for j in range(0, size) :
            if (mat[i][j]) :
                degreeI = degreeI + 1
 
        if (degreeI == 1) :
            vertexD1 = vertexD1 + 1
 
        elif (degreeI == size - 1):
            vertexDn_1 = vertexDn_1 + 1
     
    return (vertexD1 == (size - 1) and
            vertexDn_1 == 1)
 
# Driver code
mat = [[0, 1, 1, 1],
       [1, 0, 0, 0],
       [1, 0, 0, 0],
       [1, 0, 0, 0]]
  
if(checkStar(mat)) :
    print ("Star Graph")
else :
    print ("Not a Star Graph")
     
# This code is contributed by
# Manish Shaw(manishshaw1)

                    

C#

// C# to find whether given
// graph is star or not
using System;
 
class GFG
{
    // define the size of
    // incidence matrix
    static int size = 4;
     
    // function to find
    // star graph
    static bool checkStar(int [,]mat)
    {
        // initialize number of
        // vertex with deg 1 and n-1
        int vertexD1 = 0, vertexDn_1 = 0;
     
        // check for S1
        if (size == 1)
            return (mat[0, 0] == 0);
         
        // check for S2
        if (size == 2)
        return (mat[0, 0] == 0 &&
                mat[0, 1] == 1 &&
                mat[1, 0] == 1 &&
                mat[1, 1] == 0);
     
        // check for Sn (n>2)
        for (int i = 0; i < size; i++)
        {
            int degreeI = 0;
            for (int j = 0; j < size; j++)
                if (mat[i, j] == 1)
                    degreeI++;
     
            if (degreeI == 1)
                vertexD1++;
            else if (degreeI == size - 1)
                vertexDn_1++;
        }
         
        return (vertexD1 == (size - 1) &&
                vertexDn_1 == 1);
    }
     
    // Driver code
    static void Main()
    {
        int [,]mat = new int[4, 4]{{0, 1, 1, 1},
                                   {1, 0, 0, 0},
                                   {1, 0, 0, 0},
                                   {1, 0, 0, 0}};
     
        if (checkStar(mat))
            Console.Write("Star Graph");
        else
            Console.Write("Not a Star Graph");
    }
}
// This code is contributed by
// Manish Shaw(manishshaw1)

                    

PHP

<?php
// PHP to find whether
// given graph is star
// or not
 
// define the size
// of incidence matrix
$size = 4;
 
// function to
// find star graph
function checkStar($mat)
{
    global $size;
     
    // initialize number of
    // vertex with deg 1 and n-1
    $vertexD1 = 0;
    $vertexDn_1 = 0;
 
    // check for S1
    if ($size == 1)
        return ($mat[0][0] == 0);
     
    // check for S2
    if ($size == 2)
    return ($mat[0][0] == 0 &&
            $mat[0][1] == 1 &&
            $mat[1][0] == 1 &&
            $mat[1][1] == 0 );
 
    // check for Sn (n>2)
    for ($i = 0; $i < $size; $i++)
    {
        $degreeI = 0;
        for ($j = 0; $j < $size; $j++)
            if ($mat[$i][$j])
                $degreeI++;
 
        if ($degreeI == 1)
            $vertexD1++;
        else if ($degreeI == $size - 1)
            $vertexDn_1++;
    }
     
    return ($vertexD1 == ($size - 1) &&
            $vertexDn_1 == 1);
}
 
// Driver code
$mat = array(array(0, 1, 1, 1),
             array(1, 0, 0, 0),
             array(1, 0, 0, 0),
             array(1, 0, 0, 0));
 
if(checkStar($mat))
    echo ("Star Graph");
else
    echo ("Not a Star Graph");
     
// This code is contributed by
// Manish Shaw(manishshaw1)
?>

                    

Javascript

<script>
 
// Javascript to find whether given
// graph is star or not
 
// define the size of incidence matrix
var size = 4;
 
// function to find star graph
function checkStar( mat)
{
    // initialize number of vertex
    // with deg 1 and n-1
    var vertexD1 = 0, vertexDn_1 = 0;
 
    // check for S1
    if (size == 1)
        return (mat[0][0] == 0);
     
    // check for S2
    if (size == 2)   
       return (mat[0][0] == 0 && mat[0][1] == 1 &&
               mat[1][0] == 1 && mat[1][1] == 0 );
 
    // check for Sn (n>2)
    for (var i = 0; i < size; i++)
    {
        var degreeI = 0;
        for (var j = 0; j < size; j++)
            if (mat[i][j])
                degreeI++;
 
        if (degreeI == 1)
            vertexD1++;
        else if (degreeI == size-1)
            vertexDn_1++;
    }
     
    return (vertexD1 == (size-1) &&
            vertexDn_1 == 1);
}
 
// driver code
var mat = [ [0, 1, 1, 1],
                        [1, 0, 0, 0],
                        [1, 0, 0, 0],
                        [1, 0, 0, 0]];
checkStar(mat) ? document.write( "Star Graph") :
                 document.write( "Not a Star Graph");
 
</script>

                    

Output
Star Graph

Approach 2: Breath First Search:

The BFS approach of the code first initializes an integer array ‘degree’ of size ‘size’ to store the degree of each vertex in the graph. It then traverses the graph using two nested loops and calculates the degree of each vertex by counting the number of edges that are incident on the vertex. The degree of each vertex is stored in the corresponding position of the ‘degree’ array.

Next, the code searches for a center vertex of the graph. A center vertex is a vertex that is connected to all other vertices in the graph. The code checks the degree of each vertex in the ‘degree’ array and looks for a vertex whose degree is equal to the size of the graph minus one. If such a vertex is found, it is stored in the ‘center’ variable.

C++

#include<bits/stdc++.h>
using namespace std;
 
#define size 4
 
bool checkStar(int mat[][size]) {
    int degree[size] = {0};
 
    // Traverse the graph and calculate the degree of each vertex
    for(int i=0; i<size; i++) {
        for(int j=0; j<size; j++) {
            if(mat[i][j]) {
                degree[i]++;
            }
        }
    }
 
    // Find a center vertex
    int center = -1;
    for(int i=0; i<size; i++) {
        if(degree[i] == size-1) {
            center = i;
            break;
        }
    }
 
    // If center vertex is not found, the graph is not a star
    if(center == -1) {
        return false;
    }
 
    // Check if the center vertex has degree n-1 and all other vertices have degree 1
    for(int i=0; i<size; i++) {
        if(i != center && degree[i] != 1) {
            return false;
        }
    }
 
    return true;
}
 
int main() {
    int mat[size][size] = { {0, 1, 1, 1},
                            {1, 0, 0, 0},
                            {1, 0, 0, 0},
                            {1, 0, 0, 0}};
 
    if(checkStar(mat)) {
        cout << "Star Graph";
    } else {
        cout << "Not a Star Graph";
    }
 
    return 0;
}

                    

Java

import java.util.*;
 
public class StarGraph {
static int size = 4;
  static boolean checkStar(int[][] mat) {
    int[] degree = new int[size];
 
    // Traverse the graph and calculate the degree of each vertex
    for(int i=0; i<size; i++) {
        for(int j=0; j<size; j++) {
            if(mat[i][j] == 1) {
                degree[i]++;
            }
        }
    }
 
    // Find a center vertex
    int center = -1;
    for(int i=0; i<size; i++) {
        if(degree[i] == size-1) {
            center = i;
            break;
        }
    }
 
    // If center vertex is not found, the graph is not a star
    if(center == -1) {
        return false;
    }
 
    // Check if the center vertex has degree n-1 and all other vertices have degree 1
    for(int i=0; i<size; i++) {
        if(i != center && degree[i] != 1) {
            return false;
        }
    }
 
    return true;
}
 
public static void main(String[] args) {
    int[][] mat = {{0, 1, 1, 1},
                   {1, 0, 0, 0},
                   {1, 0, 0, 0},
                   {1, 0, 0, 0}};
 
    if(checkStar(mat)) {
        System.out.println("Star Graph");
    } else {
        System.out.println("Not a Star Graph");
    }
}
}

                    

Python3

size = 4
 
def checkStar(mat):
    degree = [0] * size
 
    # Traverse the graph and calculate the degree of each vertex
    for i in range(size):
        for j in range(size):
            if mat[i][j]:
                degree[i] += 1
 
    # Find a center vertex
    center = -1
    for i in range(size):
        if degree[i] == size - 1:
            center = i
            break
 
    # If center vertex is not found, the graph is not a star
    if center == -1:
        return False
 
    # Check if the center vertex has degree n-1 and all other vertices have degree 1
    for i in range(size):
        if i != center and degree[i] != 1:
            return False
 
    return True
 
mat = [[0, 1, 1, 1],
       [1, 0, 0, 0],
       [1, 0, 0, 0],
       [1, 0, 0, 0]]
 
if checkStar(mat):
    print("Star Graph")
else:
    print("Not a Star Graph")

                    

C#

using System;
 
public class Program {
    const int size = 4;
     
    static bool CheckStar(int[,] mat) {
        int[] degree = new int[size];
 
        // Traverse the graph and calculate the degree of each vertex
        for(int i=0; i<size; i++) {
            for(int j=0; j<size; j++) {
                if(mat[i,j] != 0) {
                    degree[i]++;
                }
            }
        }
 
        // Find a center vertex
        int center = -1;
        for(int i=0; i<size; i++) {
            if(degree[i] == size-1) {
                center = i;
                break;
            }
        }
 
        // If center vertex is not found, the graph is not a star
        if(center == -1) {
            return false;
        }
 
        // Check if the center vertex has degree n-1 and all other vertices have degree 1
        for(int i=0; i<size; i++) {
            if(i != center && degree[i] != 1) {
                return false;
            }
        }
 
        return true;
    }
 
    public static void Main() {
        int[,] mat = {{0, 1, 1, 1},
                      {1, 0, 0, 0},
                      {1, 0, 0, 0},
                      {1, 0, 0, 0}};
 
        if(CheckStar(mat)) {
            Console.WriteLine("Star Graph");
        } else {
            Console.WriteLine("Not a Star Graph");
        }
    }
}

                    

Javascript

const size = 4;
 
function checkStar(mat) {
  const degree = new Array(size).fill(0);
 
  // Traverse the graph and calculate the degree of each vertex
  for (let i = 0; i < size; i++) {
    for (let j = 0; j < size; j++) {
      if (mat[i][j] !== 0) {
        degree[i]++;
      }
    }
  }
 
  // Find a center vertex
  let center = -1;
  for (let i = 0; i < size; i++) {
    if (degree[i] === size - 1) {
      center = i;
      break;
    }
  }
 
  // If center vertex is not found, the graph is not a star
  if (center === -1) {
    return false;
  }
 
  // Check if the center vertex has degree n-1 and all other vertices have degree 1
  for (let i = 0; i < size; i++) {
    if (i !== center && degree[i] !== 1) {
      return false;
    }
  }
 
  return true;
}
 
const mat = [
  [0, 1, 1, 1],
  [1, 0, 0, 0],
  [1, 0, 0, 0],
  [1, 0, 0, 0],
];
 
if (checkStar(mat)) {
  console.log("Star Graph");
} else {
  console.log("Not a Star Graph");
}

                    

Output
Star Graph

Time Complexity: O(size^2), where size is the size of the adjacency matrix. 
Auxiliary Space: O(size), where size is the size of the adjacency matrix.



Last Updated : 21 Mar, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads