# Check if right triangle possible from given area and hypotenuse

Given area and hypotenuse, the aim is to print all sides if right triangle can exist, else print -1. We need to print all sides in ascending order.

Examples:

```Input  : 6 5
Output : 3 4 5

Input  : 10 6
Output : -1
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

We have discussed a solution of this problem in below post.
Find all sides of a right angled triangle from given hypotenuse and area | Set 1

In this post, a new solution with below logic is discussed.

Let the two unknown sides be a and b
Area : A = 0.5 * a * b
Hypotenuse Square : H^2 = a^2 + b^2
Substituting b, we get H2 = a2 + (4 * A2)/a2
On re-arranging, we get the equation a4 – (H2)(a2) + 4*(A2)

The discriminant D of this equation would be D = H4 – 16*(A2)
If D = 0, then roots are given by the linear equation formula, roots = (-b +- sqrt(D) )/2*a
these roots would be equal to the square of the sides, finding the square roots would give us the sides.

## C++

 `// C++ program to check existence of ` `// right triangle. ` `#include ` `using` `namespace` `std; ` ` `  `// Prints three sides of a right trianlge ` `// from given area and hypotenuse if triangle ` `// is possible, else prints -1. ` `void` `findRightAngle(``int` `A, ``int` `H)  ` `{ ` `    ``// Descriminant of the equation ` `    ``long` `D = ``pow``(H, 4) - 16 * A * A; ` `     `  `    ``if` `(D >= 0)  ` `    ``{ ` `        ``// applying the linear equation ` `        ``// formula to find both the roots ` `        ``long` `root1 = (H * H + ``sqrt``(D)) / 2; ` `        ``long` `root2 = (H * H - ``sqrt``(D)) / 2; ` `     `  `        ``long` `a = ``sqrt``(root1); ` `        ``long` `b = ``sqrt``(root2); ` `         `  `        ``if` `(b >= a) ` `        ``cout << a << ``" "` `<< b << ``" "` `<< H; ` `        ``else` `        ``cout << b << ``" "` `<< a << ``" "` `<< H; ` `    ``} ` `    ``else` `        ``cout << ``"-1"``; ` `} ` ` `  `// Driver code ` `int` `main()  ` `{ ` `    ``findRightAngle(6, 5);  ` `     `  `} ` ` `  `// This code is contributed By Anant Agarwal. `

## Java

 `// Java program to check existence of ` `// right triangle. ` ` `  `class` `GFG { ` `     `  `    ``// Prints three sides of a right trianlge ` `    ``// from given area and hypotenuse if triangle ` `    ``// is possible, else prints -1. ` `    ``static` `void` `findRightAngle(``double` `A, ``double` `H)  ` `    ``{ ` `        ``// Descriminant of the equation ` `        ``double` `D = Math.pow(H, ``4``) - ``16` `* A * A; ` `         `  `        ``if` `(D >= ``0``) ` `        ``{ ` `            ``// applying the linear equation ` `            ``// formula to find both the roots ` `            ``double` `root1 = (H * H + Math.sqrt(D)) / ``2``; ` `            ``double` `root2 = (H * H - Math.sqrt(D)) / ``2``; ` `         `  `            ``double` `a = Math.sqrt(root1); ` `            ``double` `b = Math.sqrt(root2); ` `            ``if` `(b >= a) ` `                ``System.out.print(a + ``" "` `+ b + ``" "` `+ H); ` `            ``else` `                ``System.out.print(b + ``" "` `+ a + ``" "` `+ H); ` `        ``}  ` `        ``else` `            ``System.out.print(``"-1"``); ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `main(String arg[])  ` `    ``{ ` `        ``findRightAngle(``6``, ``5``); ` `    ``} ` `} ` ` `  `// This code is contributed by Anant Agarwal. `

## Python

 `# Python program to check existence of ` `# right triangle. ` `from` `math ``import` `sqrt ` ` `  `# Prints three sides of a right trianlge ` `# from given area and hypotenuse if triangle ` `# is possible, else prints -1. ` `def` `findRightAngle(A, H): ` ` `  `    ``# Descriminant of the equation ` `    ``D ``=` `pow``(H,``4``) ``-` `16` `*` `A ``*` `A ` `    ``if` `D >``=` `0``: ` ` `  `        ``# applying the linear equation ` `        ``# formula to find both the roots ` `        ``root1 ``=` `(H ``*` `H ``+` `sqrt(D))``/``2` `        ``root2 ``=` `(H ``*` `H ``-` `sqrt(D))``/``2` ` `  `        ``a ``=` `sqrt(root1) ` `        ``b ``=` `sqrt(root2) ` `        ``if` `b >``=` `a: ` `            ``print` `a, b, H ` `        ``else``: ` `            ``print` `b, a, H ` `    ``else``: ` `        ``print` `"-1"` ` `  `# Driver code ` `# Area is 6 and hypotenuse is 5. ` `findRightAngle(``6``, ``5``) `

## C#

 `// C# program to check existence of ` `// right triangle. ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// Prints three sides of a right trianlge ` `    ``// from given area and hypotenuse if triangle ` `    ``// is possible, else prints -1. ` `    ``static` `void` `findRightAngle(``double` `A, ``double` `H) ` `    ``{ ` `         `  `        ``// Descriminant of the equation ` `        ``double` `D = Math.Pow(H, 4) - 16 * A * A; ` ` `  `        ``if` `(D >= 0) { ` `             `  `            ``// applying the linear equation ` `            ``// formula to find both the roots ` `            ``double` `root1 = (H * H + Math.Sqrt(D)) / 2; ` `            ``double` `root2 = (H * H - Math.Sqrt(D)) / 2; ` ` `  `            ``double` `a = Math.Sqrt(root1); ` `            ``double` `b = Math.Sqrt(root2); ` `             `  `            ``if` `(b >= a) ` `                ``Console.WriteLine(a + ``" "` `+ b + ``" "` `+ H); ` `            ``else` `                ``Console.WriteLine(b + ``" "` `+ a + ``" "` `+ H); ` `        ``} ` `        ``else` `            ``Console.WriteLine(``"-1"``); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``findRightAngle(6, 5); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 `= 0)  ` `    ``{ ` `         `  `        ``// applying the linear equation ` `        ``// formula to find both the roots ` `        ``\$root1` `= (``\$H` `* ``\$H` `+ sqrt(``\$D``)) / 2; ` `        ``\$root2` `= (``\$H` `* ``\$H` `- sqrt(``\$D``)) / 2; ` `     `  `        ``\$a` `= sqrt(``\$root1``); ` `        ``\$b` `= sqrt(``\$root2``); ` `         `  `        ``if` `(``\$b` `>= ``\$a``) ` `            ``echo` `\$a` `, ``" "``, ``\$b` `, ``" "` `, ``\$H``; ` `        ``else` `        ``echo` `\$b` `, ``" "` `, ``\$a` `, ``" "` `, ``\$H``; ` `    ``} ` `    ``else` `        ``echo` `"-1"``; ` `} ` ` `  `    ``// Driver code ` `    ``findRightAngle(6, 5);  ` `     `  `// This code is contributed By Anuj_67 ` `?> `

Output:

```3 4 5
```

This article is contributed by Harshit Agrawal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Improved By : vt_m

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.