Open In App
Related Articles

Check if right triangle possible from given area and hypotenuse

Improve Article
Improve
Save Article
Save
Like Article
Like

Given area and hypotenuse, the aim is to print all sides if right triangle can exist, else print -1. We need to print all sides in ascending order.

Examples: 

Input  : 6 5
Output : 3 4 5

Input  : 10 6
Output : -1 

We have discussed a solution of this problem in below post. 
Find all sides of a right angled triangle from given hypotenuse and area | Set 1
In this post, a new solution with below logic is discussed.
Let the two unknown sides be a and b 
Area : A = 0.5 * a * b 
Hypotenuse Square : H^2 = a^2 + b^2 
Substituting b, we get H2 = a2 + (4 * A2)/a2 
On re-arranging, we get the equation a4 – (H2)(a2) + 4*(A2)
The discriminant D of this equation would be D = H4 – 16*(A2
If D = 0, then roots are given by the linear equation formula, roots = (-b +- sqrt(D) )/2*a 
these roots would be equal to the square of the sides, finding the square roots would give us the sides. 

C++




// C++ program to check existence of
// right triangle.
#include <bits/stdc++.h>
using namespace std;
 
// Prints three sides of a right triangle
// from given area and hypotenuse if triangle
// is possible, else prints -1.
void findRightAngle(int A, int H)
{
    // Descriminant of the equation
    long D = pow(H, 4) - 16 * A * A;
     
    if (D >= 0)
    {
        // applying the linear equation
        // formula to find both the roots
        long root1 = (H * H + sqrt(D)) / 2;
        long root2 = (H * H - sqrt(D)) / 2;
     
        long a = sqrt(root1);
        long b = sqrt(root2);
         
        if (b >= a)
        cout << a << " " << b << " " << H;
        else
        cout << b << " " << a << " " << H;
    }
    else
        cout << "-1";
}
 
// Driver code
int main()
{
    findRightAngle(6, 5);
     
}
 
// This code is contributed By Anant Agarwal.


Java




// Java program to check existence of
// right triangle.
 
class GFG {
     
    // Prints three sides of a right triangle
    // from given area and hypotenuse if triangle
    // is possible, else prints -1.
    static void findRightAngle(double A, double H)
    {
        // Descriminant of the equation
        double D = Math.pow(H, 4) - 16 * A * A;
         
        if (D >= 0)
        {
            // applying the linear equation
            // formula to find both the roots
            double root1 = (H * H + Math.sqrt(D)) / 2;
            double root2 = (H * H - Math.sqrt(D)) / 2;
         
            double a = Math.sqrt(root1);
            double b = Math.sqrt(root2);
            if (b >= a)
                System.out.print(a + " " + b + " " + H);
            else
                System.out.print(b + " " + a + " " + H);
        }
        else
            System.out.print("-1");
    }
     
    // Driver code
    public static void main(String arg[])
    {
        findRightAngle(6, 5);
    }
}
 
// This code is contributed by Anant Agarwal.


Python3




# Python program to check existence of
# right triangle.
from math import sqrt
 
# Prints three sides of a right triangle
# from given area and hypotenuse if triangle
# is possible, else prints -1.
def findRightAngle(A, H):
 
    # Descriminant of the equation
    D = pow(H,4) - 16 * A * A
    if D >= 0:
 
        # applying the linear equation
        # formula to find both the roots
        root1 = (H * H + sqrt(D))//2
        root2 = (H * H - sqrt(D))//2
 
        a = int(sqrt(root1))
        b = int(sqrt(root2))
        if b >= a:
            print (a, b, H)
        else:
            print (b, a, H)
    else:
        print ("-1")
 
# Driver code
# Area is 6 and hypotenuse is 5.
findRightAngle(6, 5)


C#




// C# program to check existence of
// right triangle.
using System;
 
class GFG {
 
    // Prints three sides of a right triangle
    // from given area and hypotenuse if triangle
    // is possible, else prints -1.
    static void findRightAngle(double A, double H)
    {
         
        // Descriminant of the equation
        double D = Math.Pow(H, 4) - 16 * A * A;
 
        if (D >= 0) {
             
            // applying the linear equation
            // formula to find both the roots
            double root1 = (H * H + Math.Sqrt(D)) / 2;
            double root2 = (H * H - Math.Sqrt(D)) / 2;
 
            double a = Math.Sqrt(root1);
            double b = Math.Sqrt(root2);
             
            if (b >= a)
                Console.WriteLine(a + " " + b + " " + H);
            else
                Console.WriteLine(b + " " + a + " " + H);
        }
        else
            Console.WriteLine("-1");
    }
 
    // Driver code
    public static void Main()
    {
        findRightAngle(6, 5);
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP program to check existence of
// right triangle.
 
// Prints three sides of a right triangle
// from given area and hypotenuse if
// triangle is possible, else prints -1.
function findRightAngle($A, $H)
{
     
    // Descriminant of the equation
    $D = pow($H, 4) - 16 * $A * $A;
     
    if ($D >= 0)
    {
         
        // applying the linear equation
        // formula to find both the roots
        $root1 = ($H * $H + sqrt($D)) / 2;
        $root2 = ($H * $H - sqrt($D)) / 2;
     
        $a = sqrt($root1);
        $b = sqrt($root2);
         
        if ($b >= $a)
            echo $a , " ", $b , " " , $H;
        else
        echo $b , " " , $a , " " , $H;
    }
    else
        echo "-1";
}
 
    // Driver code
    findRightAngle(6, 5);
     
// This code is contributed By Anuj_67
?>


Javascript




<script>
 
// Javascript program to check existence of
// right triangle.
 
// Prints three sides of a right triangle
// from given area and hypotenuse if triangle
// is possible, else prints -1.
function findRightAngle(A,H)
{
    // Descriminant of the equation
    let D = Math.pow(H, 4) - 16 * A * A;
     
    if (D >= 0)
    {
        // applying the linear equation
        // formula to find both the roots
        let root1 = (H * H + Math.sqrt(D)) / 2;
        let root2 = (H * H - Math.sqrt(D)) / 2;
     
        let a = Math.sqrt(root1);
        let b = Math.sqrt(root2);
         
        if (b >= a)
       document.write(a + " " + b + " " + H+"<br/>");
        else
       document.write(b + " " + a + " " + H+"<br/>");
    }
    else
        document.write("-1");
}
 
// Driver code
 
    findRightAngle(6, 5);
     
// This code contributed by Rajput-Ji
 
</script>


Output: 

3 4 5

Time complexity: O(log(n)) since using inbuilt sqrt functions

Auxiliary Space: O(1)

If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 27 Aug, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials