Given a number, the task is to check if a number is divisible by 8 or not. The input number may be large and it may not be possible to store even if we use long long int.
Examples:
Input : n = 1128 Output : Yes Input : n = 1124 Output : No Input : n = 363588395960667043875487 Output : No
Since input number may be very large, we cannot use n % 8 to check if a number is divisible by 8 or not, especially in languages like C/C++. The idea is based on following fact.
A number is divisible by 8 if number formed by last three digits of it is divisible by 8.
Illustration:
For example, let us consider 76952 Number formed by last three digits = 952 Since 952 is divisible by 8, answer is YES.
How does this work?
Let us consider 76952, we can write it as 76942 = 7*10000 + 6*1000 + 9*100 + 5*10 + 2 The proof is based on below observation: Remainder of 10i divided by 8 is 0 if i greater than or equal to three. Note than 10000, 1000,... etc lead to remainder 0 when divided by 8. So remainder of "7*10000 + 6*1000 + 9*100 + 5*10 + 2" divided by 8 is equivalent to remainder of following : 0 + 0 + 9*100 + 5*10 + 2 = 52 Therefore we can say that the whole number is divisible by 8 if 952 is divisible by 8.
Below is implementation of above fact :
// C++ program to find if a number is divisible by // 8 or not #include<bits/stdc++.h> using namespace std;
// Function to find that number divisible by // 8 or not bool check(string str)
{ int n = str.length();
// Empty string
if (n == 0)
return false ;
// If there is single digit
if (n == 1)
return ((str[0]- '0' )%8 == 0);
// If there is double digit
if (n == 2)
return (((str[n-2]- '0' )*10 + (str[n-1]- '0' ))%8 == 0);
// If number formed by last three digits is
// divisible by 8.
int last = str[n-1] - '0' ;
int second_last = str[n-2] - '0' ;
int third_last = str[n-3] - '0' ;
return ((third_last*100 + second_last*10 + last) % 8 == 0);
} // Driver code int main()
{ string str = "76952" ;
check(str)? cout << "Yes" : cout << "No " ;
return 0;
} |
// Java program to find if a number is // divisible by 8 or not class IsDivisible
{ // Function to find that number divisible by
// 8 or not
static boolean check(String str)
{
int n = str.length();
// Empty string
if (n == 0 )
return false ;
// If there is single digit
if (n == 1 )
return ((str.charAt( 0 )- '0' )% 8 == 0 );
// If there is double digit
if (n == 2 )
return (((str.charAt(n- 2 )- '0' )* 10 + (str.charAt(n- 1 )- '0' ))% 8 == 0 );
// If number formed by last three digits is
// divisible by 8.
int last = str.charAt(n- 1 ) - '0' ;
int second_last = str.charAt(n- 2 ) - '0' ;
int third_last = str.charAt(n- 3 ) - '0' ;
return ((third_last* 100 + second_last* 10 + last) % 8 == 0 );
}
// main function
public static void main (String[] args)
{
String str = "76952" ;
if (check(str))
System.out.println( "Yes" );
else
System.out.println( "No" );
}
} |
# Python 3 program to find # if a number is divisible # by 8 or not # Function to find that # number divisible by 8 # or not def check(st) :
n = len (st)
# Empty string
if (n = = 0 ) :
return False
# If there is single digit
if (n = = 1 ) :
return (( int )(st[ 0 ]) % 8 = = 0 )
# If there is double digit
if (n = = 2 ) :
return (( int )(st[n - 2 ]) * 10 +
(( int )( str [n - 1 ]) % 8 = = 0 ))
# If number formed by last
# three digits is divisible
# by 8.
last = ( int )(st[n - 1 ])
second_last = ( int )(st[n - 2 ])
third_last = ( int )(st[n - 3 ])
return ((third_last * 100 + second_last * 10 +
last) % 8 = = 0 )
# Driver code st = "76952"
if (check(st)) :
print ( "Yes" )
else :
print ( "No " )
# This code is contributed by Nikita tiwari |
// C# program to find if a number // is divisible by 8 or not using System;
class IsDivisible
{ // Function to find that number
// divisible by 8 or not
static bool check(String str)
{
int n = str.Length;
// Empty string
if (n == 0)
return false ;
// If there is single digit
if (n == 1)
return ((str[0] - '0' ) %8 == 0);
// If there is double digit
if (n == 2)
return (((str[n - 2] - '0' ) * 10 +
(str[n - 1] - '0' )) % 8 == 0);
// If number formed by last three
// digits is divisible by 8
int last = str[n - 1] - '0' ;
int second_last = str[n - 2] - '0' ;
int third_last = str[n - 3] - '0' ;
return ((third_last * 100 + second_last
* 10 + last) % 8 == 0);
}
// Driver Code
public static void Main ()
{
String str = "76952" ;
if (check(str))
Console.Write( "Yes" );
else
Console.Write( "No" );
}
} // This Code is contributed by Nitin Mittal. |
<?php // PHP program to find if a number // is divisible by 8 or not // Function to find that number // divisible by 8 or not function check( $str )
{ $n = strlen ( $str );
// Empty string
if ( $n == 0)
return false;
// If there is single digit
if ( $n == 1)
return (( $str [0] - '0' ) %
8 == 0);
// If there is double digit
if ( $n == 2)
return ((( $str [ $n - 2] - '0' ) *
10 + ( $str [ $n - 1] - '0' ))
% 8 == 0);
// If number formed by last three
// digits is divisible by 8.
$last = $str [ $n - 1] - '0' ;
$second_last = $str [ $n - 2] - '0' ;
$third_last = $str [ $n - 3] - '0' ;
return (( $third_last * 100 +
$second_last * 10 +
$last ) % 8 == 0);
} // Driver code $str = "76952" ;
$x = check( $str )? "Yes" : "No " ;
echo ( $x );
// This code is contributed by Ajit. ?> |
Output:
Yes
This article is contributed by DANISH_RAZA . If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.