Check if a large number is divisible by 8 or not
Given a number, the task is to check if a number is divisible by 8 or not. The input number may be large and it may not be possible to store even if we use long long int.
Examples:
Input : n = 1128 Output : Yes Input : n = 1124 Output : No Input : n = 363588395960667043875487 Output : No
Since input number may be very large, we cannot use n % 8 to check if a number is divisible by 8 or not, especially in languages like C/C++. The idea is based on following fact.
A number is divisible by 8 if number formed by last three digits of it is divisible by 8.
Illustration:
For example, let us consider 76952 Number formed by last three digits = 952 Since 952 is divisible by 8, answer is YES.
How does this work?
Let us consider 76952, we can write it as 76942 = 7*10000 + 6*1000 + 9*100 + 5*10 + 2 The proof is based on below observation: Remainder of 10i divided by 8 is 0 if i greater than or equal to three. Note than 10000, 1000,... etc lead to remainder 0 when divided by 8. So remainder of "7*10000 + 6*1000 + 9*100 + 5*10 + 2" divided by 8 is equivalent to remainder of following : 0 + 0 + 9*100 + 5*10 + 2 = 52 Therefore we can say that the whole number is divisible by 8 if 952 is divisible by 8.
Below is the implementation of the above fact :
C++
// C++ program to find if a number is divisible by // 8 or not #include<bits/stdc++.h> using namespace std; // Function to find that number divisible by // 8 or not bool check(string str) { int n = str.length(); // Empty string if (n == 0) return false ; // If there is single digit if (n == 1) return ((str[0]- '0' )%8 == 0); // If there is double digit if (n == 2) return (((str[n-2]- '0' )*10 + (str[n-1]- '0' ))%8 == 0); // If number formed by last three digits is // divisible by 8. int last = str[n-1] - '0' ; int second_last = str[n-2] - '0' ; int third_last = str[n-3] - '0' ; return ((third_last*100 + second_last*10 + last) % 8 == 0); } // Driver code int main() { string str = "76952" ; check(str)? cout << "Yes" : cout << "No " ; return 0; } |
Java
// Java program to find if a number is // divisible by 8 or not import java.io.*; class IsDivisible { // Function to find that number divisible by // 8 or not static boolean check(String str) { int n = str.length(); // Empty string if (n == 0 ) return false ; // If there is single digit if (n == 1 ) return ((str.charAt( 0 )- '0' )% 8 == 0 ); // If there is double digit if (n == 2 ) return (((str.charAt(n- 2 )- '0' )* 10 + (str.charAt(n- 1 )- '0' ))% 8 == 0 ); // If number formed by last three digits is // divisible by 8. int last = str.charAt(n- 1 ) - '0' ; int second_last = str.charAt(n- 2 ) - '0' ; int third_last = str.charAt(n- 3 ) - '0' ; return ((third_last* 100 + second_last* 10 + last) % 8 == 0 ); } // main function public static void main (String[] args) { String str = "76952" ; if (check(str)) System.out.println( "Yes" ); else System.out.println( "No" ); } } |
Python3
# Python 3 program to find # if a number is divisible # by 8 or not # Function to find that # number divisible by 8 # or not def check(st) : n = len (st) # Empty string if (n = = 0 ) : return False # If there is single digit if (n = = 1 ) : return (( int )(st[ 0 ]) % 8 = = 0 ) # If there is double digit if (n = = 2 ) : return (( int )(st[n - 2 ]) * 10 + (( int )( str [n - 1 ]) % 8 = = 0 )) # If number formed by last # three digits is divisible # by 8. last = ( int )(st[n - 1 ]) second_last = ( int )(st[n - 2 ]) third_last = ( int )(st[n - 3 ]) return ((third_last * 100 + second_last * 10 + last) % 8 = = 0 ) # Driver code st = "76952" if (check(st)) : print ( "Yes" ) else : print ( "No " ) # This code is contributed by Nikita tiwari |
C#
// C# program to find if a number // is divisible by 8 or not using System; class IsDivisible { // Function to find that number // divisible by 8 or not static bool check(String str) { int n = str.Length; // Empty string if (n == 0) return false ; // If there is single digit if (n == 1) return ((str[0] - '0' ) %8 == 0); // If there is double digit if (n == 2) return (((str[n - 2] - '0' ) * 10 + (str[n - 1] - '0' )) % 8 == 0); // If number formed by last three // digits is divisible by 8 int last = str[n - 1] - '0' ; int second_last = str[n - 2] - '0' ; int third_last = str[n - 3] - '0' ; return ((third_last * 100 + second_last * 10 + last) % 8 == 0); } // Driver Code public static void Main () { String str = "76952" ; if (check(str)) Console.Write( "Yes" ); else Console.Write( "No" ); } } // This Code is contributed by Nitin Mittal. |
PHP
<?php // PHP program to find if a number // is divisible by 8 or not // Function to find that number // divisible by 8 or not function check( $str ) { $n = strlen ( $str ); // Empty string if ( $n == 0) return false; // If there is single digit if ( $n == 1) return (( $str [0] - '0' ) % 8 == 0); // If there is double digit if ( $n == 2) return ((( $str [ $n - 2] - '0' ) * 10 + ( $str [ $n - 1] - '0' )) % 8 == 0); // If number formed by last three // digits is divisible by 8. $last = $str [ $n - 1] - '0' ; $second_last = $str [ $n - 2] - '0' ; $third_last = $str [ $n - 3] - '0' ; return (( $third_last * 100 + $second_last * 10 + $last ) % 8 == 0); } // Driver code $str = "76952" ; $x = check( $str )? "Yes" : "No " ; echo ( $x ); // This code is contributed by Ajit. ?> |
Javascript
<script> // JavaScript program for the above approach // Function to find that number // divisible by 8 or not function check(str) { let n = str.length; // Empty string if (n == 0) return false ; // If there is single digit if (n == 1) return ((str[0] - '0' ) %8 == 0); // If there is double digit if (n == 2) return (((str[n - 2] - '0' ) * 10 + (str[n - 1] - '0' )) % 8 == 0); // If number formed by last three // digits is divisible by 8 let last = str[n - 1] - '0' ; let second_last = str[n - 2] - '0' ; let third_last = str[n - 3] - '0' ; return ((third_last * 100 + second_last * 10 + last) % 8 == 0); } // Driver Code let str = "76952" ; if (check(str)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by splevel62. </script> |
Yes
Time Complexity: O(1), as we are not using any loops for traversing.
Auxiliary Space: O(1), as we are not using any extra space.
Another Approach(Using Bitwise Operator):
The binary representation of the number 8 is 1000. If a number is divisible by 8, it means that its last three bits in binary representation are 000. Therefore, we can check if a number is divisible by 8 by checking if its last three bits are 000 or not.
To do this, we perform a bitwise AND operation between the input number and 7 (which is 111 in binary and has its last three bits set to 0). If the result of the bitwise AND operation is 0, then the input number is divisible by 8, otherwise it is not divisible by 8.
Note that we use long long int data type to handle large numbers.
C++
#include <iostream> bool isDivisibleBy8( long long int n) { return (n & 7) == 0; // 7 is 0111 in binary } int main() { long long int n = 76952; if (isDivisibleBy8(n)) { std::cout << n << " is divisible by 8\n" ; } else { std::cout << n << " is not divisible by 8\n" ; } return 0; } |
Java
import java.util.*; public class Main { // Function to check if a number is divisible by 8 static boolean isDivisibleBy8( long n) { return (n & 7 ) == 0 ; // 7 is 0111 in binary } public static void main(String[] args) { long n = 76952 ; if (isDivisibleBy8(n)) { System.out.println(n + " is divisible by 8" ); } else { System.out.println(n + " is not divisible by 8" ); } } } |
Python3
def isDivisibleBy8(n: int ) - > bool : return (n & 7 ) = = 0 # 7 is 0111 in binary n = 76952 if isDivisibleBy8(n): print (n, "is divisible by 8" ) else : print (n, "is not divisible by 8" ) |
C#
using System; public class Program { // Function to check if a number is divisible by 8 static bool isDivisibleBy8( long n) { return (n & 7) == 0; // 7 is 0111 in binary } public static void Main( string [] args) { long n = 76952; if (isDivisibleBy8(n)) { Console.WriteLine(n + " is divisible by 8" ); } else { Console.WriteLine(n + " is not divisible by 8" ); } } } |
Javascript
function isDivisibleBy8(n) { return (n & 7) == 0; // 7 is 0111 in binary } let n = 76952; if (isDivisibleBy8(n)) { console.log(n + " is divisible by 8" ); } else { console.log(n + " is not divisible by 8" ); } |
76952 is divisible by 8
Time Complexity: O(1)
Auxiliary Space: O(1)
This article is contributed by DANISH_RAZA . If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...