Given two positive integers X and Y, the task is to check if X can be converted to Y or not by repeatedly changing the value of X to (3 * X / 2) (if X is even) or (X – 1). If it is possible to convert X into Y, then print “Yes”. Otherwise, print “No”.
Examples:
Input: X = 6, Y = 8
Output: Yes
Explanation:
Operation 1: Convert X(= 6) to 3*X/2 ( = 3 * (6 / 2) = 9).
Operation 2: Convert X(= 9) to (X – 1) (= 8).
Therefore, the total number of operations required is 2.
Input: X = 3, Y = 6
Output: No
Approach: The given problem can be solved based on the following observations:
- If the value of X is at least Y, then X can always be converted to Y using the second operation, i.e. reducing X by 1.
- If X is even, then it can be converted to (3 * (X / 2)), which is greater than X for all even numbers greater than 0.
- If the value of X is odd, then X can be converted to (X – 1), which can be converted into (3 * (X – 1)/2), which is greater than X.
- Therefore, from the above observations, the conversion of X into Y is always possible for X > 3.
- Following base cases are required to be considered:
- X = 1: Conversion possible only if Y = 1.
- X = 2 or X = 3: Conversion possible only if Y ? 3.
- In all the other cases, conversion is not possible.
Follow the steps below to solve the problem:
- If the value X is greater than 4, then print “Yes”.
- If the value X is 1 and Y is 1, then print “Yes”.
- If the value X is 2 or 3 and Y is less than 4, then print “Yes”.
- Otherwise, print “No” for all the other cases.
Below is the implementation of above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void check( int X, int Y)
{
if (X > 3) {
cout << "Yes" ;
}
else if (X == 1 and Y == 1) {
cout << "Yes" ;
}
else if (X == 2 and Y <= 3) {
cout << "Yes" ;
}
else if (X == 3 and Y <= 3) {
cout << "Yes" ;
}
else {
cout << "No" ;
}
}
int main()
{
int X = 6, Y = 8;
check(X, Y);
return 0;
}
|
Java
class GFG{
static void check( int X, int Y)
{
if (X > 3 )
{
System.out.print( "Yes" );
}
else if (X == 1 && Y == 1 )
{
System.out.print( "Yes" );
}
else if (X == 2 && Y <= 3 )
{
System.out.print( "Yes" );
}
else if (X == 3 && Y <= 3 )
{
System.out.print( "Yes" );
}
else
{
System.out.print( "No" );
}
}
public static void main (String[] args)
{
int X = 6 , Y = 8 ;
check(X, Y);
}
}
|
Python3
def check(X, Y):
if (X > 3 ):
print ( "Yes" )
elif (X = = 1 and Y = = 1 ):
print ( "Yes" )
elif (X = = 2 and Y < = 3 ):
print ( "Yes" )
elif (X = = 3 and Y < = 3 ):
print ( "Yes" )
else :
print ( "No" )
if __name__ = = '__main__' :
X = 6
Y = 8
check(X, Y)
|
C#
using System;
class GFG{
static void check( int X, int Y)
{
if (X > 3)
{
Console.WriteLine( "Yes" );
}
else if (X == 1 && Y == 1)
{
Console.WriteLine( "Yes" );
}
else if (X == 2 && Y <= 3)
{
Console.WriteLine( "Yes" );
}
else if (X == 3 && Y <= 3)
{
Console.WriteLine( "Yes" );
}
else
{
Console.WriteLine( "No" );
}
}
public static void Main( string [] args)
{
int X = 6, Y = 8;
check(X, Y);
}
}
|
Javascript
<script>
function check(X, Y)
{
if (X > 3)
{
document.write( "Yes" );
}
else if (X == 1 && Y == 1)
{
document.write( "Yes" );
}
else if (X == 2 && Y <= 3)
{
document.write( "Yes" );
}
else if (X == 3 && Y <= 3)
{
document.write( "Yes" );
}
else
{
document.write( "No" );
}
}
let X = 6, Y = 8;
check(X, Y);
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)