Open In App

Check if two Linked Lists are permutations of each other

Last Updated : 25 Oct, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given two singly Linked list of integer data. The task is to write a program that efficiently checks if two linked lists are permutations of each other.

Examples:  

Input: 1 -> 2 -> 3 -> 4 -> 5
2 -> 1 -> 3 -> 5 -> 4
Output: Yes
Input: 10 -> 20 -> 30 -> 40
20 -> 50 -> 60 -> 70
Output: No

Approach: Do the following for both linked lists:  

  1. Take a temporary node pointing to the head of the linked list.
  2. Start traversing through the linked list, and keep sum and multiplications of data of nodes.

Note: After having sum and multiplication of both linked list, check if sum and multiplication of both linked lists are equal. If they are equal, it means linked lists are permutations of each other, else not.

Below is the implementation of the above approach:  

C++




// C++ program to check if linked lists
// are permutations of each other
#include <bits/stdc++.h>
 
using namespace std;
 
// A linked list node
struct Node {
    int data;
    struct Node* next;
};
 
/*Function to check if two linked lists
* are permutations of each other
* first : reference to head of first linked list
* second : reference to head of second linked list
*/
bool isPermutation(struct Node* first, struct Node* second)
{
 
    // Variables to keep track of sum and multiplication
    int sum1 = 0, sum2 = 0, mul1 = 1, mul2 = 1;
 
    struct Node* temp1 = first;
 
    // Traversing through linked list
    // and calculating sum and multiply
    while (temp1 != NULL) {
        sum1 += temp1->data;
        mul1 *= temp1->data;
        temp1 = temp1->next;
    }
 
    struct Node* temp2 = second;
 
    // Traversing through linked list
    // and calculating sum and multiply
    while (temp2 != NULL) {
        sum2 += temp2->data;
        mul2 *= temp2->data;
        temp2 = temp2->next;
    }
 
    return ((sum1 == sum2) && (mul1 == mul2));
}
 
// Function to add a node at the
// beginning of Linked List
void push(struct Node** head_ref, int new_data)
{
    /* allocate node */
    struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
 
    /* put in the data */
    new_node->data = new_data;
 
    /* link the old list of the new node */
    new_node->next = (*head_ref);
 
    /* move the head to point to the new node */
    (*head_ref) = new_node;
}
 
// Driver program to test above function
int main()
{
    struct Node* first = NULL;
 
    /* First constructed linked list is:
    12 -> 35 -> 1 -> 10 -> 34 -> 1 */
    push(&first, 1);
    push(&first, 34);
    push(&first, 10);
    push(&first, 1);
    push(&first, 35);
    push(&first, 12);
 
    struct Node* second = NULL;
    /* Second constructed linked list is:
    35 -> 1 -> 12 -> 1 -> 10 -> 34 */
    push(&second, 35);
    push(&second, 1);
    push(&second, 12);
    push(&second, 1);
    push(&second, 10);
    push(&second, 34);
 
    if (isPermutation(first, second)) {
        cout << "Yes" << endl;
    }
    else {
        cout << "No" << endl;
    }
 
    return 0;
}


Java




// Java program to check if linked lists
// are permutations of each other
import java.util.*;
 
class GFG
{
static class Node
{
    int data;
    Node next;
};
 
/*Function to check if two linked lists
* are permutations of each other
* first : reference to head of first linked list
* second : reference to head of second linked list
*/
static boolean isPermutation(Node first,
                             Node second)
{
 
    // Variables to keep track of
    // sum and multiplication
    int sum1 = 0, sum2 = 0,
        mul1 = 1, mul2 = 1;
 
    Node temp1 = first;
 
    // Traversing through linked list
    // and calculating sum and multiply
    while (temp1 != null)
    {
        sum1 += temp1.data;
        mul1 *= temp1.data;
        temp1 = temp1.next;
    }
 
    Node temp2 = second;
 
    // Traversing through linked list
    // and calculating sum and multiply
    while (temp2 != null)
    {
        sum2 += temp2.data;
        mul2 *= temp2.data;
        temp2 = temp2.next;
    }
 
    return ((sum1 == sum2) &&
            (mul1 == mul2));
}
 
// Function to add a node at the
// beginning of Linked List
static Node push(Node head_ref, int new_data)
{
    /* allocate node */
    Node new_node = new Node();
 
    /* put in the data */
    new_node.data = new_data;
 
    /* link the old list of the new node */
    new_node.next = head_ref;
 
    /* move the head to point to the new node */
    head_ref = new_node;
    return head_ref;
}
 
// Driver Code
public static void main(String[] args)
{
    Node first = null;
 
    /* First constructed linked list is:
    12 . 35 . 1 . 10 . 34 . 1 */
    first = push(first, 1);
    first = push(first, 34);
    first = push(first, 10);
    first = push(first, 1);
    first = push(first, 35);
    first = push(first, 12);
 
    Node second = null;
     
    /* Second constructed linked list is:
    35 . 1 . 12 . 1 . 10 . 34 */
    second = push(second, 35);
    second = push(second, 1);
    second = push(second, 12);
    second = push(second, 1);
    second = push(second, 10);
    second = push(second, 34);
 
    if (isPermutation(first, second))
    {
        System.out.print("Yes");
    }
    else
    {
        System.out.print("No");
    }
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to check if linked lists
# are permutations of each other
class Node:
     
    def __init__(self):
         
        self.data = 0
        self.next = None
 
# Function to check if two linked lists
# are permutations of each other
# first : reference to head of first linked list
# second : reference to head of second linked list
def isPermutation(first, second):
     
    # Variables to keep track of
    # sum and multiplication
    sum1 = 0
    sum2 = 0
    mul1 = 1
    mul2 = 1
  
    temp1 = first
  
    # Traversing through linked list
    # and calculating sum and multiply
    while (temp1 != None):
        sum1 += temp1.data
        mul1 *= temp1.data
        temp1 = temp1.next
 
    temp2 = second
     
    # Traversing through linked list
    # and calculating sum and multiply
    while (temp2 != None):
        sum2 += temp2.data
        mul2 *= temp2.data
        temp2 = temp2.next
     
    return ((sum1 == sum2) and (mul1 == mul2))
 
# Function to add a node at the
# beginning of Linked List
def push(head_ref, new_data):
     
    # Allocate node
    new_node = Node()
     
    # Put in the data
    new_node.data = new_data
  
    # Link the old list of the new node
    new_node.next = head_ref
  
    # Move the head to point to the new node
    head_ref = new_node
    return head_ref
 
# Driver Code
if __name__=='__main__':
     
    first = None
  
    # First constructed linked list is:
    # 12 . 35 . 1 . 10 . 34 . 1
    first = push(first, 1)
    first = push(first, 34)
    first = push(first, 10)
    first = push(first, 1)
    first = push(first, 35)
    first = push(first, 12)
  
    second = None
      
    # Second constructed linked list is:
    # 35 . 1 . 12 . 1 . 10 . 34
    second = push(second, 35)
    second = push(second, 1)
    second = push(second, 12)
    second = push(second, 1)
    second = push(second, 10)
    second = push(second, 34)
  
    if (isPermutation(first, second)):
        print("Yes")
    else:
        print("No")
     
# This code is contributed by pratham76


C#




// C# program to check if linked lists
// are permutations of each other
using System;
 
class GFG
{
public class Node
{
    public int data;
    public Node next;
};
 
/*Function to check if two linked lists
* are permutations of each other
* first : reference to head of first linked list
* second : reference to head of second linked list
*/
static bool isPermutation(Node first,
                          Node second)
{
 
    // Variables to keep track of
    // sum and multiplication
    int sum1 = 0, sum2 = 0,
        mul1 = 1, mul2 = 1;
 
    Node temp1 = first;
 
    // Traversing through linked list
    // and calculating sum and multiply
    while (temp1 != null)
    {
        sum1 += temp1.data;
        mul1 *= temp1.data;
        temp1 = temp1.next;
    }
 
    Node temp2 = second;
 
    // Traversing through linked list
    // and calculating sum and multiply
    while (temp2 != null)
    {
        sum2 += temp2.data;
        mul2 *= temp2.data;
        temp2 = temp2.next;
    }
 
    return ((sum1 == sum2) &&
            (mul1 == mul2));
}
 
// Function to add a node at the
// beginning of Linked List
static Node push(Node head_ref, int new_data)
{
    /* allocate node */
    Node new_node = new Node();
 
    /* put in the data */
    new_node.data = new_data;
 
    /* link the old list of the new node */
    new_node.next = head_ref;
 
    /* move the head to point to the new node */
    head_ref = new_node;
    return head_ref;
}
 
// Driver Code
public static void Main(String[] args)
{
    Node first = null;
 
    /* First constructed linked list is:
    12 . 35 . 1 . 10 . 34 . 1 */
    first = push(first, 1);
    first = push(first, 34);
    first = push(first, 10);
    first = push(first, 1);
    first = push(first, 35);
    first = push(first, 12);
 
    Node second = null;
     
    /* Second constructed linked list is:
    35 . 1 . 12 . 1 . 10 . 34 */
    second = push(second, 35);
    second = push(second, 1);
    second = push(second, 12);
    second = push(second, 1);
    second = push(second, 10);
    second = push(second, 34);
 
    if (isPermutation(first, second))
    {
        Console.Write("Yes");
    }
    else
    {
        Console.Write("No");
    }
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
      // JavaScript program to check if linked lists
      // are permutations of each other
      class Node {
        constructor() {
          this.data = 0;
          this.next = null;
        }
      }
 
      /*Function to check if two linked lists
       * are permutations of each other
       * first : reference to head of first linked list
       * second : reference to head of second linked list
       */
      function isPermutation(first, second) {
        // Variables to keep track of
        // sum and multiplication
        var sum1 = 0,
          sum2 = 0,
          mul1 = 1,
          mul2 = 1;
 
        var temp1 = first;
 
        // Traversing through linked list
        // and calculating sum and multiply
        while (temp1 != null) {
          sum1 += temp1.data;
          mul1 *= temp1.data;
          temp1 = temp1.next;
        }
 
        var temp2 = second;
 
        // Traversing through linked list
        // and calculating sum and multiply
        while (temp2 != null) {
          sum2 += temp2.data;
          mul2 *= temp2.data;
          temp2 = temp2.next;
        }
 
        return sum1 == sum2 && mul1 == mul2;
      }
 
      // Function to add a node at the
      // beginning of Linked List
      function push(head_ref, new_data) {
        /* allocate node */
        var new_node = new Node();
 
        /* put in the data */
        new_node.data = new_data;
 
        /* link the old list of the new node */
        new_node.next = head_ref;
 
        /* move the head to point to the new node */
        head_ref = new_node;
        return head_ref;
      }
 
      // Driver Code
      var first = null;
 
      /* First constructed linked list is:
    12 . 35 . 1 . 10 . 34 . 1 */
      first = push(first, 1);
      first = push(first, 34);
      first = push(first, 10);
      first = push(first, 1);
      first = push(first, 35);
      first = push(first, 12);
 
      var second = null;
 
      /* Second constructed linked list is:
    35 . 1 . 12 . 1 . 10 . 34 */
      second = push(second, 35);
      second = push(second, 1);
      second = push(second, 12);
      second = push(second, 1);
      second = push(second, 10);
      second = push(second, 34);
 
      if (isPermutation(first, second)) {
        document.write("Yes");
      } else {
        document.write("No");
      }
       
</script>


Output

Yes






Complexity Analysis:

  • Time Complexity: O(N) where N is the size of linked lists
  • Auxiliary Space: O(1) because using constant space

Check if two Linked Lists are permutations of each other using Hashing.

Here’s an approach to check if two linked lists are permutations of each other using a hash table:

  • Traverse through both linked lists and store the frequency of each element in a hash table. The hash table can be implemented using an array of size equal to the range of the elements in the linked lists.
  • Traverse through both linked lists again and compare the frequency of each element in the hash table. If the frequency is not equal, the linked lists are not permutations of each other.
  • If the frequency of all elements is equal, the linked lists are permutations of each other.

Below is the implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
// A linked list node
struct Node {
    int data;
    struct Node* next;
};
 
// Function to check if two linked lists are permutations of each other
bool arePermutations(struct Node* first, struct Node* second) {
    // Initialize hash table with all elements set to 0
    const int range = 1000; // Change range according to the range of elements in linked lists
    int hash[range] = {0};
 
    // Traverse through first linked list and update hash table
    struct Node* temp = first;
    while (temp != NULL) {
        hash[temp->data]++;
        temp = temp->next;
    }
 
    // Traverse through second linked list and compare hash table
    temp = second;
    while (temp != NULL) {
        if (hash[temp->data] == 0) {
            return false;
        }
        hash[temp->data]--;
        temp = temp->next;
    }
 
    // Check if all elements have the same frequency in both linked lists
    for (int i = 0; i < range; i++) {
        if (hash[i] != 0) {
            return false;
        }
    }
 
    return true;
}
 
// Function to add a node at the beginning of Linked List
void push(struct Node** head_ref, int new_data) {
    /* allocate node */
    struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
 
    /* put in the data */
    new_node->data = new_data;
 
    /* link the old list of the new node */
    new_node->next = (*head_ref);
 
    /* move the head to point to the new node */
    (*head_ref) = new_node;
}
 
// Driver program to test above function
int main() {
    struct Node* first = NULL;
 
    /* First constructed linked list is:
    12 -> 35 -> 1 -> 10 -> 34 -> 1 */
    push(&first, 1);
    push(&first, 34);
    push(&first, 10);
    push(&first, 1);
    push(&first, 35);
    push(&first, 12);
 
    struct Node* second = NULL;
    /* Second constructed linked list is:
    35 -> 1 -> 12 -> 1 -> 10 -> 34 */
    push(&second, 35);
    push(&second, 1);
    push(&second, 12);
    push(&second, 1);
    push(&second, 10);
    push(&second, 34);
 
    if (arePermutations(first, second)) {
        cout << "Yes" << endl;
    }
    else {
        cout << "No" << endl;
    }
 
    return 0;
}


Java




import java.util.HashMap;
 
class Node {
    int data;
    Node next;
 
    public Node(int data)
    {
        this.data = data;
        this.next = null;
    }
}
 
public class LinkedListPermutations {
 
    // Function to check if two linked lists are
    // permutations of each other
    public static boolean arePermutations(Node first,
                                          Node second)
    {
        // Initialize a HashMap to count the frequency of
        // elements
        HashMap<Integer, Integer> freqMap = new HashMap<>();
 
        // Traverse through the first linked list and update
        // the frequency HashMap
        Node temp = first;
        while (temp != null) {
            if (freqMap.containsKey(temp.data)) {
                freqMap.put(temp.data,
                            freqMap.get(temp.data) + 1);
            }
            else {
                freqMap.put(temp.data, 1);
            }
            temp = temp.next;
        }
 
        // Traverse through the second linked list and
        // compare with the frequency HashMap
        temp = second;
        while (temp != null) {
            if (!freqMap.containsKey(temp.data)
                || freqMap.get(temp.data) == 0) {
                return false;
            }
            freqMap.put(temp.data,
                        freqMap.get(temp.data) - 1);
            temp = temp.next;
        }
 
        // Check if all elements have the same frequency in
        // both linked lists
        for (int value : freqMap.values()) {
            if (value != 0) {
                return false;
            }
        }
        return true;
    }
 
    // Function to add a node at the beginning of the linked
    // list
    public static Node push(Node head, int newData)
    {
        Node newNode = new Node(newData);
        newNode.next = head;
        head = newNode;
        return head;
    }
 
    public static void main(String[] args)
    {
        Node first = null;
 
        // First constructed linked list is: 12 -> 35 -> 1
        // -> 10 -> 34 -> 1
        first = push(first, 1);
        first = push(first, 34);
        first = push(first, 10);
        first = push(first, 1);
        first = push(first, 35);
        first = push(first, 12);
 
        Node second = null;
        // Second constructed linked list is: 35 -> 1 -> 12
        // -> 1 -> 10 -> 34
        second = push(second, 35);
        second = push(second, 1);
        second = push(second, 12);
        second = push(second, 1);
        second = push(second, 10);
        second = push(second, 34);
 
        if (arePermutations(first, second)) {
            System.out.println("Yes");
        }
        else {
            System.out.println("No");
        }
    }
}


Python3




class Node:
    def __init__(self, data):
        self.data = data
        self.next = None
 
# Function to check if two linked lists are permutations of each other
def are_permutations(first, second):
    # Initialize a dictionary to count the frequency of elements
    freq_dict = {}
 
    # Traverse through the first linked list and update the frequency dictionary
    temp = first
    while temp:
        if temp.data in freq_dict:
            freq_dict[temp.data] += 1
        else:
            freq_dict[temp.data] = 1
        temp = temp.next
 
    # Traverse through the second linked list and compare with the frequency dictionary
    temp = second
    while temp:
        if temp.data not in freq_dict or freq_dict[temp.data] == 0:
            return False
        freq_dict[temp.data] -= 1
        temp = temp.next
 
    # Check if all elements have the same frequency in both linked lists
    return all(value == 0 for value in freq_dict.values())
 
# Function to add a node at the beginning of the linked list
def push(head_ref, new_data):
    new_node = Node(new_data)
    new_node.next = head_ref[0]
    head_ref[0] = new_node
 
# Driver program to test the above function
if __name__ == "__main__":
    first = None
 
    # First constructed linked list is: 12 -> 35 -> 1 -> 10 -> 34 -> 1
    push([first], 1)
    push([first], 34)
    push([first], 10)
    push([first], 1)
    push([first], 35)
    push([first], 12)
 
    second = None
    # Second constructed linked list is: 35 -> 1 -> 12 -> 1 -> 10 -> 34
    push([second], 35)
    push([second], 1)
    push([second], 12)
    push([second], 1)
    push([second], 10)
    push([second], 34)
 
    if are_permutations(first, second):
        print("Yes")
    else:
        print("No")
 
         
# This code is contributed by shivamgupta0987654321


C#




using System;
using System.Collections.Generic;
 
// A linked list node
class Node
{
    public int data;
    public Node next;
 
    public Node(int data)
    {
        this.data = data;
        this.next = null;
    }
}
 
class LinkedList
{
    // Function to check if two linked lists are permutations of each other
    public static bool ArePermutations(Node first, Node second)
    {
        // Initialize a dictionary to store the frequency of elements
        Dictionary<int, int> frequencyMap = new Dictionary<int, int>();
 
        // Traverse through the first linked list and update the frequency map
        Node temp = first;
        while (temp != null)
        {
            if (frequencyMap.ContainsKey(temp.data))
                frequencyMap[temp.data]++;
            else
                frequencyMap[temp.data] = 1;
            temp = temp.next;
        }
 
        // Traverse through the second linked list and compare with the frequency map
        temp = second;
        while (temp != null)
        {
            if (!frequencyMap.ContainsKey(temp.data) || frequencyMap[temp.data] == 0)
                return false;
            frequencyMap[temp.data]--;
            temp = temp.next;
        }
 
        // Check if all elements have a frequency of 0 in the frequency map
        foreach (int value in frequencyMap.Values)
        {
            if (value != 0)
                return false;
        }
 
        return true;
    }
 
    // Function to add a node at the beginning of the linked list
    public static Node Push(Node head, int newData)
    {
        Node newNode = new Node(newData);
        newNode.next = head;
        return newNode;
    }
 
    // Driver program to test the above function
    public static void Main()
    {
        Node first = null;
 
        /* First constructed linked list is:
        12 -> 35 -> 1 -> 10 -> 34 -> 1 */
        first = Push(first, 1);
        first = Push(first, 34);
        first = Push(first, 10);
        first = Push(first, 1);
        first = Push(first, 35);
        first = Push(first, 12);
 
        Node second = null;
        /* Second constructed linked list is:
        35 -> 1 -> 12 -> 1 -> 10 -> 34 */
        second = Push(second, 35);
        second = Push(second, 1);
        second = Push(second, 12);
        second = Push(second, 1);
        second = Push(second, 10);
        second = Push(second, 34);
 
        if (ArePermutations(first, second))
        {
            Console.WriteLine("Yes");
        }
        else
        {
            Console.WriteLine("No");
        }
    }
}


Javascript




// A linked list node
class Node {
    constructor(data) {
        this.data = data;
        this.next = null;
    }
}
function GFG(first, second) {
    const range = 1000;
    const hash = Array.from({ length: range }, () => 0);
    // Traverse through first linked list and
    // update hash table
    let temp = first;
    while (temp !== null) {
        hash[temp.data]++;
        temp = temp.next;
    }
    // Traverse through second linked list and
    // compare hash table
    temp = second;
    while (temp !== null) {
        if (hash[temp.data] === 0) {
            return false;
        }
        hash[temp.data]--;
        temp = temp.next;
    }
    // Check if all elements have the same frequency in
    // both linked lists
    for (let i = 0; i < range; i++) {
        if (hash[i] !== 0) {
            return false;
        }
    }
    return true;
}
// Function to add a node at the
// beginning of Linked List
function push(headRef, new_data) {
    const new_node = new Node(new_data);
    new_node.next = headRef;
    headRef = new_node;
    return headRef;
}
 
    let first = null;
// First constructed linked list
    first = push(first, 1);
    first = push(first, 34);
    first = push(first, 10);
    first = push(first, 1);
    first = push(first, 35);
    first = push(first, 12);
    let second = null;
    second = push(second, 35);
    second = push(second, 1);
    second = push(second, 12);
    second = push(second, 1);
    second = push(second, 10);
    second = push(second, 34);
    if (GFG(first, second)) {
        console.log("Yes");
    } else {
        console.log("No");
    }


Output

Yes





Complexity Analysis:

  • Time Complexity: O(N) where N is the size of linked lists
  • Auxiliary Space: O(1) because using constant space


Like Article
Suggest improvement
Share your thoughts in the comments

Similar Reads