Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Check if two arrays are permutations of each other using Mathematical Operation

  • Last Updated : 11 Aug, 2021

Given two unsorted arrays of same size where arr[i] >= 0 for all i, the task is to check if two arrays are permutations of each other or not.
Examples: 
 

Input: arr1[] = {2, 1, 3, 5, 4, 3, 2}
       arr2[] = {3, 2, 2, 4, 5, 3, 1}
Output: Yes

Input: arr1[] = {2, 1, 3, 5}
       arr2[] = {3, 2, 2, 4}
Output: No

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

It has been already discussed in Check if two arrays are permutations of each other using Sorting and Hashing. But in this post, a different approach is discussed.
 



Approach:  

  1. Traverse the first array A, add and multiply all the elements and store them in variables as Sum1 and Mul1 respectively.
  2. Similarly, traverse the second array B, add and multiply all the elements and store them in variables as Sum2 and Mul2 respectively.
  3. Now, compare both sum1, sum2 and mul1, mul2. If Sum1 == Sum2 and Mul1 == Mul2, then both arrays are permutations of each other, else not.

Below is the implementation of above approach: 
 

C++




// CPP code to check if arrays
// are permutations of eah other
#include <iostream>
using namespace std;
 
// Function to check if arrays
// are permutations of each other.
bool arePermutations(int a[], int b[], int n, int m)
{
 
    int sum1 = 0, sum2 = 0, mul1 = 1, mul2 = 1;
 
    // Calculating sum and multiply of first array
    for (int i = 0; i < n; i++) {
        sum1 += a[i];
        mul1 *= a[i];
    }
 
    // Calculating sum and multiply of second array
    for (int i = 0; i < m; i++) {
        sum2 += b[i];
        mul2 *= b[i];
    }
 
    // If sum and mul of both arrays are equal,
    // return true, else return false.
    return ((sum1 == sum2) && (mul1 == mul2));
}
 
// Driver code
int main()
{
 
    int a[] = { 1, 3, 2 };
    int b[] = { 3, 1, 2 };
 
    int n = sizeof(a) / sizeof(int);
    int m = sizeof(b) / sizeof(int);
 
    if (arePermutations(a, b, n, m))
        cout << "Yes" << endl;
     
    else
        cout << "No" << endl;
 
    return 0;
}

Java




// Java code to check if arrays
// are permutations of eah other
 
import java.io.*;
 
class GFG {
 
 
// Function to check if arrays
// are permutations of each other.
static boolean arePermutations(int a[], int b[], int n, int m)
{
 
    int sum1 = 0, sum2 = 0, mul1 = 1, mul2 = 1;
 
    // Calculating sum and multiply of first array
    for (int i = 0; i < n; i++) {
        sum1 += a[i];
        mul1 *= a[i];
    }
 
    // Calculating sum and multiply of second array
    for (int i = 0; i < m; i++) {
        sum2 += b[i];
        mul2 *= b[i];
    }
 
    // If sum and mul of both arrays are equal,
    // return true, else return false.
    return ((sum1 == sum2) && (mul1 == mul2));
}
 
// Driver code
 
    public static void main (String[] args) {
            int a[] = { 1, 3, 2 };
    int b[] = { 3, 1, 2 };
 
    int n = a.length;
    int m = b.length;
 
    if (arePermutations(a, b, n, m)==true)
        System.out.println( "Yes");
     
    else
        System.out.println( "No");
    }
}
// This code is contributed by  inder_verma..

Python3




# Python 3 program to check if arrays
# are permutations of eah other
 
# Function to check if arrays
# are permutations of each other
def arePermutations(a, b, n, m) :
 
    sum1, sum2, mul1, mul2 = 0, 0, 1, 1
 
    # Calculating sum and multiply of first array
    for i in range(n) :
        sum1 += a[i]
        mul1 *= a[i]
 
    # Calculating sum and multiply of second array
    for i in range(m) :
        sum2 += b[i]
        mul2 *= b[i]
 
    # If sum and mul of both arrays are equal,
    # return true, else return false.
    return((sum1 == sum2) and (mul1 == mul2))
 
 
# Driver code    
if __name__ == "__main__" :
 
    a = [ 1, 3, 2]
    b = [ 3, 1, 2]
 
    n = len(a)
    m = len(b)
 
    if arePermutations(a, b, n, m) :
        print("Yes")
 
    else :
        print("No")
 
  
# This code is contributed by ANKITRAI1

C#




// C# code to check if arrays
// are permutations of eah other
using System;
 
class GFG
{
 
// Function to check if arrays
// are permutations of each other.
static bool arePermutations(int[] a, int[] b,
                            int n, int m)
{
 
    int sum1 = 0, sum2 = 0,
        mul1 = 1, mul2 = 1;
 
    // Calculating sum and multiply
    // of first array
    for (int i = 0; i < n; i++)
    {
        sum1 += a[i];
        mul1 *= a[i];
    }
 
    // Calculating sum and multiply
    // of second array
    for (int i = 0; i < m; i++)
    {
        sum2 += b[i];
        mul2 *= b[i];
    }
 
    // If sum and mul of both arrays
    // are equal, return true, else
    // return false.
    return ((sum1 == sum2) &&
            (mul1 == mul2));
}
 
// Driver code
public static void Main ()
{
    int[] a = { 1, 3, 2 };
    int[] b = { 3, 1, 2 };
     
    int n = a.Length;
    int m = b.Length;
     
    if (arePermutations(a, b, n, m) == true)
        Console.Write( "Yes");
     
    else
        Console.Write( "No");
}
}
 
// This code is contributed
// by ChitraNayal

PHP




<?php
// PHP code to check if arrays
// are permutations of eah other
 
// Function to check if arrays
// are permutations of each other.
function arePermutations($a, $b, $n, $m)
{
 
    $sum1 = 0; $sum2 = 0;
    $mul1 = 1; $mul2 = 1;
 
    // Calculating sum and multiply
    // of first array
    for ($i = 0; $i < $n; $i++)
    {
        $sum1 += $a[$i];
        $mul1 *= $a[$i];
    }
 
    // Calculating sum and multiply
    // of second array
    for ($i = 0; $i < $m; $i++)
    {
        $sum2 += $b[$i];
        $mul2 *= $b[$i];
    }
 
    // If sum and mul of both arrays
    // are equal, return true, else
    // return false.
    return (($sum1 == $sum2) &&
            ($mul1 == $mul2));
}
 
// Driver code
$a = array( 1, 3, 2 );
$b = array( 3, 1, 2 );
 
$n = sizeof($a);
$m = sizeof($b);
 
if (arePermutations($a, $b, $n, $m))
    echo "Yes" . "\n";
else
    echo "No" . "\n";
 
// This code is contributed
// by Akanksha Rai(Abby_akku)

Javascript




<script>
 
// JavaScript code to check if arrays
// are permutations of eah other
     
    // Function to check if arrays
   // are permutations of each other.
    function arePermutations(a,b,n,m)
    {
        let sum1 = 0, sum2 = 0, mul1 = 1, mul2 = 1;
   
    // Calculating sum and multiply of first array
    for (let i = 0; i < n; i++) {
        sum1 += a[i];
        mul1 *= a[i];
    }
   
    // Calculating sum and multiply of second array
    for (let i = 0; i < m; i++) {
        sum2 += b[i];
        mul2 *= b[i];
    }
   
    // If sum and mul of both arrays are equal,
    // return true, else return false.
    return ((sum1 == sum2) && (mul1 == mul2));
     
    }
     
    // Driver code
    let a=[1, 3, 2 ];
    let b=[3, 1, 2];
     
    let n = a.length;
    let m = b.length;
     
    if (arePermutations(a, b, n, m)==true)
        document.write( "Yes");
       
    else
        document.write( "No");
     
 
// This code is contributed by rag2127
 
</script>
Output: 
Yes

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!