Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Check if there is any pair in a given range with GCD is divisible by k

  • Last Updated : 14 Apr, 2021

Given a range, we need to check if is their any pairs in the segment whose GCD is divisible by k.
Examples: 
 

Input : l=4, r=6, k=2
Output : YES
There are two numbers 4 and 6 whose GCD is 2 which is divisible by 2.

Input : l=3 r=5 k=4
Output : NO
Their is no such pair whose gcd is divisible by 5.

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

Basically we need to count such numbers in range l to r such that they are divisible by k. Because if we choose any such two numbers then their gcd is also a multiple of k. Now if count of such numbers is greater than one then we can form pair, otherwise it’s impossible to form a pair (x, y) such that gcd(x, y) is divisible by k.
Below is the implementation of above approach: 
 

C++




#include <bits/stdc++.h>
using namespace std;
 
// function to count such possible numbers
bool Check_is_possible(int l, int r, int k)
{
    int count = 0;
 
    for (int i = l; i <= r; i++) {
 
        // if i is divisible by k
        if (i % k == 0)
            count++;
    }
 
    // if count of such numbers
    // is greater than one
    return (count > 1);
}
 
// Driver code
int main()
{
    int l = 4, r = 12;
    int k = 5;
 
    if (Check_is_possible(l, r, k))
        cout << "YES\n";
    else
        cout << "NO\n";
    return 0;
}

Java




// function to count such
// possible numbers
 
class GFG {
 
    public boolean Check_is_possible(int l, int r,
            int k) {
        int count = 0;
 
        for (int i = l; i <= r; i++) {
 
            // if i is divisible by k
            if (i % k == 0) {
                count++;
            }
        }
 
        // if count of such numbers
        // is greater than one
        return (count > 1);
    }
 
    public static void main(String[] args) {
        GFG g = new GFG();
        int l = 4, r = 12;
        int k = 5;
 
        if (g.Check_is_possible(l, r, k)) {
            System.out.println("YES");
        } else {
            System.out.println("NO");
        }
 
    }
}
// This code is contributed by RAJPUT-JI

Python3




# function to count such possible numbers
def Check_is_possible(l, r, k):
 
    count = 0;
 
    for i in range(l, r + 1):
 
        # if i is divisible by k
        if (i % k == 0):
            count += 1;
 
    # if count of such numbers
    # is greater than one
    return (count > 1);
 
# Driver code
l = 4;
r = 12;
k = 5;
if (Check_is_possible(l, r, k)):
    print("YES");
else:
    print("NO");
 
# This code is contributed by mits

C#




using System;
 
// function to count such
// possible numbers
class GFG
{
public bool Check_is_possible(int l, int r,
                              int k)
{
    int count = 0;
 
    for (int i = l; i <= r; i++)
    {
 
        // if i is divisible by k
        if (i % k == 0)
            count++;
    }
 
    // if count of such numbers
    // is greater than one
    return (count > 1);
}
 
// Driver code
public static void Main()
{
    GFG g = new GFG();
    int l = 4, r = 12;
    int k = 5;
 
    if (g.Check_is_possible(l, r, k))
        Console.WriteLine("YES\n");
    else
    Console.WriteLine("NO\n");
}
}
 
// This code is contributed
// by Soumik

PHP




<?php
 
// function to count such possible numbers
function Check_is_possible($l, $r, $k)
{
    $count = 0;
 
    for ($i = $l; $i <= $r; $i++)
    {
 
        // if i is divisible by k
        if ($i % $k == 0)
            $count++;
    }
 
    // if count of such numbers
    // is greater than one
    return ($count > 1);
}
 
// Driver code
$l = 4; $r = 12;
$k = 5;
 
if (Check_is_possible($l, $r, $k))
    echo "YES\n";
else
    echo "NO\n";
 
// This code is contributed
// by Akanksha Rai
?>

Javascript




<script>
 
// function to count such
// possible numbers
    function Check_is_possible(l , r , k) {
        var count = 0;
 
        for (i = l; i <= r; i++) {
 
            // if i is divisible by k
            if (i % k == 0) {
                count++;
            }
        }
 
        // if count of such numbers
        // is greater than one
        return (count > 1);
    }
 
        var l = 4, r = 12;
        var k = 5;
 
        if (Check_is_possible(l, r, k)) {
            document.write("YES");
        } else {
            document.write("NO");
        }
 
 
// This code is contributed by todaysgaurav
 
</script>
Output: 
YES

 

Time Complexity: O(r – l + 1)
An efficient solution is based on the efficient approach discussed here.
 

C++




// C++ program to count the numbers divisible
// by k in a given range
#include <bits/stdc++.h>
using namespace std;
 
// Returns count of numbers in [l r] that
// are divisible by k.
int Check_is_possible(int l, int r, int k)
{
    int div_count = (r / k) - (l / k);
 
    // Add 1 explicitly as l is divisible by k
    if (l % k == 0)
        div_count++;
 
    // l is not divisible by k
    return (div_count > 1);
}
 
// Driver Code
int main()
{
    int l = 30, r = 70, k = 10;
 
    if (Check_is_possible(l, r, k))
        cout << "YES\n";
    else
        cout << "NO\n";
    return 0;
}

Java




// Java program to count the numbers divisible
// by k in a given range
 
class GFG {
 
// Returns count of numbers in [l r] that
// are divisible by k.
    static boolean Check_is_possible(int l, int r, int k) {
        int div_count = (r / k) - (l / k);
 
        // Add 1 explicitly as l is divisible by k
        if (l % k == 0) {
            div_count++;
        }
 
        // l is not divisible by k
        return (div_count > 1);
    }
 
// Driver Code
    public static void main(String[] args) {
        int l = 30, r = 70, k = 10;
        if (Check_is_possible(l, r, k)) {
            System.out.println("YES");
        } else {
            System.out.println("NO");
        }
 
    }
}
// This code is contributed by RAJPUT-JI

Python3




# Python3 program to count the numbers
# divisible by k in a given range
 
# Returns count of numbers in [l r]
# that are divisible by k.
def Check_is_possible(l, r, k):
 
    div_count = (r // k) - (l // k)
 
    # Add 1 explicitly as l is
    # divisible by k
    if l % k == 0:
        div_count += 1
 
    # l is not divisible by k
    return div_count > 1
 
# Driver Code
if __name__ == "__main__":
 
    l, r, k = 30, 70, 10
 
    if Check_is_possible(l, r, k) == True:
        print("YES")
    else:
        print("NO")
     
# This code is contributed
# by Rituraj Jain

C#




// C# program to count the numbers divisible
// by k in a given range
using System;
  
 
public class GFG {
 
// Returns count of numbers in [l r] that
// are divisible by k.
    static bool Check_is_possible(int l, int r, int k) {
        int div_count = (r / k) - (l / k);
 
        // Add 1 explicitly as l is divisible by k
        if (l % k == 0) {
            div_count++;
        }
 
        // l is not divisible by k
        return (div_count > 1);
    }
 
// Driver Code
    public static void Main() {
        int l = 30, r = 70, k = 10;
        if (Check_is_possible(l, r, k)) {
            Console.WriteLine("YES");
        } else {
            Console.WriteLine("NO");
        }
 
    }
}
// This code is contributed by RAJPUT-JI

PHP




<?php
// PHP program to count the numbers
// divisible by k in a given range
 
// Returns count of numbers in [l r]
// that are divisible by k.
function Check_is_possible($l, $r, $k)
{
    $div_count = (int)($r / $k) -
                 (int)($l / $k);
 
    // Add 1 explicitly as l
    // is divisible by k
    if ($l % $k == 0)
        $div_count++;
 
    // l is not divisible by k
    return ($div_count > 1);
}
 
// Driver Code
$l = 30;
$r = 70;
$k = 10;
 
if (Check_is_possible($l, $r, $k))
    echo "YES\n";
else
    echo "NO\n";
 
// This Code is contributed by mits
?>

Javascript




<script>
 
// Javascript program to count the numbers divisible
// by k in a given range
    // Returns count of numbers in [l r] that
    // are divisible by k.
    function Check_is_possible(l , r , k)
    {
        var div_count = (r / k) - (l / k);
 
        // Add 1 explicitly as l is divisible by k
        if (l % k == 0) {
            div_count++;
        }
 
        // l is not divisible by k
        return (div_count > 1);
    }
 
    // Driver Code
     
        var l = 30, r = 70, k = 10;
        if (Check_is_possible(l, r, k)) {
            document.write("YES");
        } else {
            document.write("NO");
        }
 
 
// This code contributed by Rajput-Ji
 
</script>
Output: 
YES

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :