Check if the sum of perfect squares in an array is divisible by x

Given an array arr[] and an integer x, the task is to check whether the sum of all the perfect squares from the array is divisible by x or not. If divisible then print Yes else print No.

Examples:

Input: arr[] = {2, 3, 4, 6, 9, 10}, x = 13
Output: Yes
4 and 9 are the only perfect squares from the array
sum = 4 + 9 = 13 (which is divisible by 13)



Input: arr[] = {2, 4, 25, 49, 3, 8}, x = 9
Output: No

Approach: Run a loop from i to n – 1 and check whether arr[i] is a perfect square or not. If arr[i] is a perfect square then update sum = sum + arr[i]. If in the end sum % x = 0 then print Yes else print No. To check whether an element is a perfect square or not, follow the following steps:

Let num be an integer element
float sq = sqrt(x)
if floor(sq) = ceil(sq) then num is a perfect square else not.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function that returns true if the sum of all the
// perfect squares of the given array are divisible by x
bool check(int arr[], int x, int n)
{
    long long sum = 0;
    for (int i = 0; i < n; i++) {
        double x = sqrt(arr[i]);
  
        // If arr[i] is a perfect square
        if (floor(x) == ceil(x)) {
            sum += arr[i];
        }
    }
  
    if (sum % x == 0)
        return true;
    else
        return false;
}
  
// Driver code
int main()
{
    int arr[] = { 2, 3, 4, 9, 10 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int x = 13;
  
    if (check(arr, x, n)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach 
public class GFG{
  
    // Function that returns true if the the sum of all the 
    // perfect squares of the given array is divisible by x 
    static boolean check(int arr[], int x, int n) 
    
        long sum = 0
        for (int i = 0; i < n; i++) { 
            double y = Math.sqrt(arr[i]); 
      
            // If arr[i] is a perfect square 
            if (Math.floor(y) == Math.ceil(y)) { 
                sum += arr[i]; 
            
        
      
        if (sum % x == 0
            return true
        else
            return false
    
  
  
  
    // Driver Code 
    public static void main(String []args){
        int arr[] = { 2, 3, 4, 9, 10 }; 
        int n = arr.length ;
        int x = 13
  
        if (check(arr, x, n)) { 
            System.out.println("Yes"); 
        
        else
           System.out.println("No"); 
        
    }
    // This code is contributed by Ryuga
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
import math
  
# Function that returns true if the the sum of all the 
# perfect squares of the given array is divisible by x
def check (a, y):
    sum = 0
    for i in range(len(a)):
          
        x = math.sqrt(a[i])
  
        # If a[i] is a perfect square
        if (math.floor(x) == math.ceil(x)):
            sum = sum + a[i]
      
    if (sum % y == 0):
        return True
    else:
        return False
          
  
# Driver code
a = [2, 3, 4, 9, 10]
x = 13
  
if check(a, x) :
    print("Yes")
else:
    print("No")

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
  
using System;
public class GFG{
   
    // Function that returns true if the the sum of all the 
    // perfect squares of the given array is divisible by x 
    static bool check(int[] arr, int x, int n) 
    
        long sum = 0; 
        for (int i = 0; i < n; i++) { 
            double y = Math.Sqrt(arr[i]); 
       
            // If arr[i] is a perfect square 
            if (Math.Floor(y) == Math.Ceiling(y)) { 
                sum += arr[i]; 
            
        
       
        if (sum % x == 0) 
            return true
        else
            return false
    
   
   
   
    // Driver Code 
    public static void Main(){
        int[] arr = { 2, 3, 4, 9, 10 }; 
        int n = arr.Length ;
        int x = 13; 
   
        if (check(arr, x, n)) { 
            Console.Write("Yes"); 
        
        else
           Console.Write("No"); 
        
    }    
}

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach
  
// Function that returns true if the 
// sum of all the perfect squares of 
// the given array is divisible by x
function check($arr, $x, $n)
{
    $sum = 0;
    for ($i = 0; $i < $n; $i++) 
    {
        $x = sqrt($arr[$i]);
  
        // If arr[i] is a perfect square
        if (floor($x) == ceil($x)) 
        {
            $sum += $arr[$i];
        }
    }
  
    if (($sum % $x) == 0)
        return true;
    else
        return false;
}
  
// Driver code
$arr = array( 2, 3, 4, 9, 10 );
$n = sizeof($arr);
$x = 13;
  
if (!check($arr, $x, $n)) 
{
    echo "Yes";
}
else 
{
    echo "No";
}
  
// This code is contributed by Sachin
?>

chevron_right


Output:

Yes


My Personal Notes arrow_drop_up

Data science |Machine learning|Programming facebook -https//wwwfacebookcom/profilephpid=100002787011326

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.