Check if the sum of digits of number is divisible by all of its digits
Given an integer N, the task is to check whether the sum of digits of the given number is divisible by all of its digits or not. If divisible then print Yes else print No.
Examples:
Input: N = 12
Output: No
Sum of digits = 1 + 2 = 3
3 is divisible by 1 but not 2.Input: N = 123
Output: Yes
Approach: First find the sum of the digits of the number then one by one check, whether the calculated sum is divisible by all the digits of the number. If for some digit it is not divisible then print No else print Yes.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function that returns true if all the digits // of n divide the sum of the digits of n bool isDivisible( long long int n) { // Store a copy of the original number long long int temp = n; // Find the sum of the digits of n int sum = 0; while (n) { int digit = n % 10; sum += digit; n /= 10; } // Restore the original value n = temp; // Check if all the digits divide // the calculated sum while (n) { int digit = n % 10; // If current digit doesn't // divide the sum if (sum % digit != 0) return false ; n /= 10; } return true ; } // Driver code int main() { long long int n = 123; if (isDivisible(n)) cout << "Yes" ; else cout << "No" ; return 0; } |
Java
// Java implementation of the approach public class GFG { // Function that returns true if all the digits // of n divide the sum of the digits of n static boolean isDivisible( long n) { // Store a copy of the original number long temp = n; // Find the sum of the digits of n int sum = 0 ; while (n != 0 ) { int digit = ( int ) n % 10 ; sum += digit; n /= 10 ; } // Restore the original value n = temp; // Check if all the digits divide // the calculated sum while (n != 0 ) { int digit = ( int )n % 10 ; // If current digit doesn't // divide the sum if (sum % digit != 0 ) return false ; n /= 10 ; } return true ; } // Driver code public static void main (String[] args) { long n = 123 ; if (isDivisible(n)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by AnkitRai01 |
Python
# Python implementation of the approach # Function that returns true if all the digits # of n divide the sum of the digits of n def isDivisible(n): # Store a copy of the original number temp = n # Find the sum of the digits of n sum = 0 while (n): digit = n % 10 sum + = digit n / / = 10 # Restore the original value n = temp # Check if all the digits divide # the calculated sum while (n): digit = n % 10 # If current digit doesn't # divide the sum if ( sum % digit ! = 0 ): return False n / / = 10 ; return True # Driver code n = 123 if (isDivisible(n)): print ( "Yes" ) else : print ( "No" ) |
C#
// C# implementation of the approach using System; class GFG { // Function that returns true if all the digits // of n divide the sum of the digits of n static bool isDivisible( long n) { // Store a copy of the original number long temp = n; // Find the sum of the digits of n int sum = 0; while (n != 0) { int digit = ( int ) n % 10; sum += digit; n /= 10; } // Restore the original value n = temp; // Check if all the digits divide // the calculated sum while (n != 0) { int digit = ( int )n % 10; // If current digit doesn't // divide the sum if (sum % digit != 0) return false ; n /= 10; } return true ; } // Driver code static public void Main () { long n = 123; if (isDivisible(n)) Console.Write( "Yes" ); else Console.Write( "No" ); } } // This code is contributed by @tushil. |
Javascript
<script> // Javascript implementation of the approach // Function that returns true if all the // digits of n divide the sum of the digits // of n function isDivisible(n) { // Store a copy of the original number var temp = n; // Find the sum of the digits of n var sum = 0; while (n != 0) { var digit = parseInt(n % 10); sum += digit; n = parseInt(n / 10); } // Restore the original value n = temp; // Check if all the digits divide // the calculated sum while (n != 0) { var digit = parseInt(n % 10); // If current digit doesn't // divide the sum if (sum % digit != 0) return false ; n = parseInt(n/10); } return true ; } // Driver code var n = 123; if (isDivisible(n)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by todaysgaurav </script> |
Yes
Time Complexity: O(log(N))
Auxiliary Space: O(1)
Method #2: Using string:
- We have to convert the given number to a string by taking a new variable.
- Traverse the string ,Convert each element to integer and add this to sum.
- Traverse the string again
- Check if the sum is not divisible by any one of the digits
- If it is true then return False
- Else return True
Below is the implementation of above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; string getResult( int n) { // Converting integer to string string st = to_string(n); // Initialising sum to 0 int sum = 0; int length = st.size(); // Traversing through the string for ( int i = 0; i < st.size(); i++) { // Converting character to int sum = sum + ( int (st[i]) - 48); } // Comparing number and sum // Traversing again for ( int i = 0; i < st.size(); i++) { // Check if any digit is // not dividing the sum if (sum % ( int (st[i]) - 48) != 0) { // Return false return "No" ; } // If any value is not returned // then all the digits are dividing the sum // SO return true else { return "Yes" ; } } } // Driver Code int main() { int n = 123; // passing this number to get result function cout << getResult(n); return 0; } // This code is contributed by subhamkumarm348. |
Java
// Java implementation of the approach import java.io.*; import java.util.*; class GFG { // Function that returns true if all the digits // of n divide the sum of the digits of n public static String getResult( int n) { // Converting integer to string String st = String.valueOf(n); // Initialising sum to 0 int sum = 0 ; int length = st.length(); // Traversing through the string for ( int i = 0 ; i < length; i++) { // Converting character to int int c = st.charAt(i)- 48 ; sum += c; } // Comparing number and sum // Traversing again for ( int i = 0 ; i < length; i++) { // Check if any digit is // not dividing the sum int c = st.charAt(i)- 48 ; if (sum % c != 0 ) { // Return false return "No" ; } // If any value is not returned // then all the digits are dividing the sum // SO return true else { return "Yes" ; } } return "No" ; } // Driver code public static void main (String[] args) { int n = 123 ; // passing this number to get result function System.out.println(getResult(n)); } } // This code is contributed by aditya942003patil |
Python3
# Python implementation of above approach def getResult(n): # Converting integer to string st = str (n) # Initialising sum to 0 sum = 0 length = len (st) # Traversing through the string for i in st: # Converting character to int sum = sum + int (i) # Comparing number and sum # Traversing again for i in st: # Check if any digit is # not dividing the sum if ( sum % int (i) ! = 0 ): # Return false return 'No' # If any value is not returned # then all the digits are dividing the sum # SO return true return 'Yes' # Driver Code n = 123 # passing this number to get result function print (getResult(n)) # this code is contributed by vikkycirus |
C#
// C# program to implement above approach using System; using System.Collections.Generic; class GFG { static string getResult( int n) { // Converting integer to string string st = n.ToString(); // Initialising sum to 0 int sum = 0; int length = st.Length; // Traversing through the string for ( int i = 0; i < length; i++) { // Converting character to int sum = sum + (( int )st[i] - 48); } // Comparing number and sum // Traversing again for ( int i = 0; i < length; i++) { // Check if any digit is // not dividing the sum if (sum % (( int )st[i] - 48) != 0) { return "No" ; } // If any value is not returned // then all the digits are dividing the sum // SO return true else { return "Yes" ; } } return "No" ; } // Driver Code public static void Main( string [] args){ int n = 123; // Function call Console.Write(getResult(n)); } } // This code is contributed by adityapatil12. |
Javascript
<script> // JavaScript implementation of above approach function getResult(n){ // Converting integer to string var st = n.toString(); // Initialising sum to 0 var sum = 0 var length = st.length; // Traversing through the string for ( var i= 0 ;i<st.length ; i++){ // Converting character to int sum = sum + Number(st[i]) } // Comparing number and sum // Traversing again for ( var i = 0 ; i < st.length ; i++){ // Check if any digit is // not dividing the sum if (sum % Number(st[i]) != 0){ // Return false return 'No' } // If any value is not returned // then all the digits are dividing the sum // SO return true else { return 'Yes' ; } } } // Driver Code var n = 123; // passing this number to get result function document.write(getResult(n)); </script> |
Yes
Time Complexity: O(n), where n represents the length of the given string.
Auxiliary Space: O(d), where d represents the number of digits in the string.
Approach 3: Dynamic Programming:
The dynamic programming approach to check if a number is divisible by the sum of its digits works as follows:
- Convert the given number to a string.
- Calculate the sum of the digits of the number.
- Initialize a boolean array dp of size sum+1, where dp[i] indicates whether it is possible to obtain a sum of i using some of the digits of the number.
- Initialize dp[0] to true, since it is always possible to obtain a sum of 0 using no digits.
- Traverse the digits of the number one by one. For each digit, traverse the dp array from right to left and update the values of dp[i] as follows:
a. If i is less than the current digit, then dp[i] remains unchanged.
b. If i is greater than or equal to the current digit, then dp[i] is updated as dp[i] || dp[i – digit], where digit is the current digit. - Return dp[sum], which indicates whether it is possible to obtain a sum of sum using some of the digits of the number.
- If dp[sum] is true, then the sum of the digits of the number is divisible by the number itself, otherwise it is not divisible.
Here is the code for above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; // Dynamic programming approach to check if a number is divisible // by the sum of its digits bool isDivisible( int n) { // Convert the number to string string str = to_string(n); // Calculate the sum of digits int sum = 0; for ( char c : str) { sum += (c - '0' ); } // If the sum is 0, return false if (sum == 0) { return false ; } // Initialize the dp array bool dp[sum + 1]; memset (dp, false , sizeof (dp)); dp[0] = true ; // Traverse the digits of the number for ( char c : str) { int digit = c - '0' ; for ( int i = sum; i >= digit; i--) { dp[i] = dp[i] || dp[i - digit]; } } // Return true if the sum is divisible by the number return dp[sum]; } int main() { long long int n = 123; if (isDivisible(n)) cout << "Yes" ; else cout << "No" ; return 0; } |
Java
import java.util.Arrays; public class Main { // Dynamic programming approach to check if a number is divisible // by the sum of its digits static boolean isDivisible( int n) { // Convert the number to string String str = Integer.toString(n); // Calculate the sum of digits int sum = 0 ; for ( char c : str.toCharArray()) { sum += (c - '0' ); } // If the sum is 0, return false if (sum == 0 ) { return false ; } // Initialize the dp array boolean [] dp = new boolean [sum + 1 ]; Arrays.fill(dp, false ); dp[ 0 ] = true ; // Traverse the digits of the number for ( char c : str.toCharArray()) { int digit = c - '0' ; for ( int i = sum; i >= digit; i--) { dp[i] = dp[i] || dp[i - digit]; } } // Return true if the sum is divisible by the number return dp[sum]; } public static void main(String[] args) { int n = 123 ; if (isDivisible(n)) { System.out.println( "Yes" ); } else { System.out.println( "No" ); } } } |
Javascript
// Dynamic programming approach to check if a number is divisible // by the sum of its digits function isDivisible(n) { // Convert the number to string let str = n.toString(); // Calculate the sum of digits let sum = 0; for (let i = 0; i < str.length; i++) { sum += parseInt(str[i]); } // If the sum is 0, return false if (sum === 0) { return false ; } // Initialize the dp array let dp = new Array(sum + 1).fill( false ); dp[0] = true ; // Traverse the digits of the number for (let i = 0; i < str.length; i++) { let digit = parseInt(str[i]); for (let j = sum; j >= digit; j--) { dp[j] = dp[j] || dp[j - digit]; } } // Return true if the sum is divisible by the number return dp[sum]; } let n = 123; if (isDivisible(n)) { console.log( "Yes" ); } else { console.log( "No" ); } |
Output
Yes
Time Complexity: O(SN), where S is the sum of the digits of the number and N is the number of digits in the number.
Auxiliary Space: O(S), as we are using a boolean array of size S+1 to store the intermediate results of the subproblems.
Please Login to comment...