Related Articles

# Check if the remainder of N-1 factorial when divided by N is N-1 or not

• Last Updated : 24 Mar, 2021

Given an integer N where 1 ≤ N ≤ 105, the task is to find whether (N-1)! % N = N – 1 or not.
Examples:

Input: N = 3
Output: Yes
Explanation:
Here, n = 3 so (3 – 1)! = 2! = 2
=> 2 % 3 = 2 which is N – 1 itself
Input: N = 4
Output: No
Explanation:
Here, n = 4 so (4 – 1)! = 3! = 6
=> 6 % 3 = 0 which is not N – 1.

Naive approach: To solve the question mentioned above the naive method is to find (N – 1)! and check if (N – 1)! % N = N – 1 or not. But this approach will cause overflow since 1 ≤ N ≤ 105
Efficient approach: To solve the above problem in an optimal way we will use Wilson’s theorem which states that a natural number p > 1 is a prime number if and only if

(p – 1) ! ≡ -1 mod p
or; (p – 1) ! ≡ (p-1) mod p

So, now we just have to check if N is a prime number(including 1) or not.

Below is the implementation of the above approach:

## C++

 `// C++ implementation to check``// the following expression for``// an integer N is valid or not``#include ``using` `namespace` `std;` `// Function to check if a number``// holds the condition``// (N-1)! % N = N - 1``bool` `isPrime(``int` `n)``{``    ``// Corner cases``    ``if` `(n == 1)``        ``return` `true``;``    ``if` `(n <= 3)``        ``return` `true``;` `    ``// Number divisible by 2``    ``// or 3 are not prime``    ``if` `(n % 2 == 0 || n % 3 == 0)``        ``return` `false``;` `    ``// Iterate from 5 and keep``    ``// checking for prime``    ``for` `(``int` `i = 5; i * i <= n; i = i + 6)` `        ``if` `(n % i == 0``            ``|| n % (i + 2) == 0)``            ``return` `false``;` `    ``return` `true``;``}` `// Function to check the``// expression for the value N``void` `checkExpression(``int` `n)``{``    ``if` `(isPrime(n))``        ``cout << ``"Yes"``;``    ``else``        ``cout << ``"No"``;``}` `// Driver Program``int` `main()``{``    ``int` `N = 3;``    ``checkExpression(N);``    ``return` `0;``}`

## Java

 `// Java implementation to check``// the following expression for``// an integer N is valid or not``class` `GFG{` `// Function to check if a number``// holds the condition``// (N-1)! % N = N - 1``static` `boolean` `isPrime(``int` `n)``{``    ` `    ``// Corner cases``    ``if` `(n == ``1``)``        ``return` `true``;``    ``if` `(n <= ``3``)``        ``return` `true``;` `    ``// Number divisible by 2``    ``// or 3 are not prime``    ``if` `(n % ``2` `== ``0` `|| n % ``3` `== ``0``)``        ``return` `false``;` `    ``// Iterate from 5 and keep``    ``// checking for prime``    ``for``(``int` `i = ``5``; i * i <= n; i = i + ``6``)``       ``if` `(n % i == ``0` `|| n % (i + ``2``) == ``0``)``           ``return` `false``;``           ` `    ``return` `true``;``}` `// Function to check the``// expression for the value N``static` `void` `checkExpression(``int` `n)``{``    ``if` `(isPrime(n))``        ``System.out.println(``"Yes"``);``    ``else``        ``System.out.println(``"No"``);``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `N = ``3``;``    ` `    ``checkExpression(N);``}``}` `// This code is contributed by shivanisinghss2110`

## Python3

 `# Python3 implementation to check``# the following expression for``# an integer N is valid or not` `# Function to check if a number``# holds the condition``# (N-1)! % N = N - 1``def` `isPrime(n):``    ` `    ``# Corner cases``    ``if` `(n ``=``=` `1``):``        ``return` `True``    ``if` `(n <``=` `3``):``        ``return` `True` `    ``# Number divisible by 2``    ``# or 3 are not prime``    ``if` `((n ``%` `2` `=``=` `0``) ``or` `(n ``%` `3` `=``=` `0``)):``        ``return` `False` `    ``# Iterate from 5 and keep``    ``# checking for prime``    ``i ``=` `5``    ``while` `(i ``*` `i <``=` `n):``        ``if` `((n ``%` `i ``=``=` `0``) ``or``            ``(n ``%` `(i ``+` `2``) ``=``=` `0``)):``            ``return` `False``;``            ``i ``+``=` `6` `    ``return` `true;` `# Function to check the``# expression for the value N``def` `checkExpression(n):``    ` `    ``if` `(isPrime(n)):``        ``print``(``"Yes"``)``    ``else``:``        ``print``(``"No"``)` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ` `    ``N ``=` `3``    ` `    ``checkExpression(N)` `# This code is contributed by jana_sayantan`

## C#

 `// C# implementation to check``// the following expression for``// an integer N is valid or not``using` `System;``class` `GFG{` `// Function to check if a number``// holds the condition``// (N-1)! % N = N - 1``static` `bool` `isPrime(``int` `n)``{``    ` `    ``// Corner cases``    ``if` `(n == 1)``        ``return` `true``;``    ``if` `(n <= 3)``        ``return` `true``;` `    ``// Number divisible by 2``    ``// or 3 are not prime``    ``if` `(n % 2 == 0 || n % 3 == 0)``        ``return` `false``;` `    ``// Iterate from 5 and keep``    ``// checking for prime``    ``for``(``int` `i = 5; i * i <= n; i = i + 6)``       ``if` `(n % i == 0 || n % (i + 2) == 0)``           ``return` `false``;``            ` `    ``return` `true``;``}` `// Function to check the``// expression for the value N``static` `void` `checkExpression(``int` `n)``{``    ``if` `(isPrime(n))``        ``Console.Write(``"Yes"``);``    ``else``        ``Console.Write(``"No"``);``}` `// Driver code``public` `static` `void` `Main()``{``    ``int` `N = 3;``    ` `    ``checkExpression(N);``}``}` `// This code is contributed by Code_Mech`

## Javascript

 ``
Output:
`Yes`

Time Complexity: O(sqrt(N))

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up