Skip to content
Related Articles

Related Articles

Improve Article

Check if the remainder of N-1 factorial when divided by N is N-1 or not

  • Last Updated : 24 Mar, 2021

Given an integer N where 1 ≤ N ≤ 105, the task is to find whether (N-1)! % N = N – 1 or not.
Examples:

Input: N = 3 
Output: Yes 
Explanation: 
Here, n = 3 so (3 – 1)! = 2! = 2 
=> 2 % 3 = 2 which is N – 1 itself
Input: N = 4 
Output: No 
Explanation: 
Here, n = 4 so (4 – 1)! = 3! = 6 
=> 6 % 3 = 0 which is not N – 1.

Naive approach: To solve the question mentioned above the naive method is to find (N – 1)! and check if (N – 1)! % N = N – 1 or not. But this approach will cause overflow since 1 ≤ N ≤ 105
Efficient approach: To solve the above problem in an optimal way we will use Wilson’s theorem which states that a natural number p > 1 is a prime number if and only if

(p – 1) ! ≡ -1 mod p 
or; (p – 1) ! ≡ (p-1) mod p

So, now we just have to check if N is a prime number(including 1) or not.



Below is the implementation of the above approach:

C++




// C++ implementation to check
// the following expression for
// an integer N is valid or not
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a number
// holds the condition
// (N-1)! % N = N - 1
bool isPrime(int n)
{
    // Corner cases
    if (n == 1)
        return true;
    if (n <= 3)
        return true;
 
    // Number divisible by 2
    // or 3 are not prime
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    // Iterate from 5 and keep
    // checking for prime
    for (int i = 5; i * i <= n; i = i + 6)
 
        if (n % i == 0
            || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to check the
// expression for the value N
void checkExpression(int n)
{
    if (isPrime(n))
        cout << "Yes";
    else
        cout << "No";
}
 
// Driver Program
int main()
{
    int N = 3;
    checkExpression(N);
    return 0;
}

Java




// Java implementation to check
// the following expression for
// an integer N is valid or not
class GFG{
 
// Function to check if a number
// holds the condition
// (N-1)! % N = N - 1
static boolean isPrime(int n)
{
     
    // Corner cases
    if (n == 1)
        return true;
    if (n <= 3)
        return true;
 
    // Number divisible by 2
    // or 3 are not prime
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    // Iterate from 5 and keep
    // checking for prime
    for(int i = 5; i * i <= n; i = i + 6)
       if (n % i == 0 || n % (i + 2) == 0)
           return false;
            
    return true;
}
 
// Function to check the
// expression for the value N
static void checkExpression(int n)
{
    if (isPrime(n))
        System.out.println("Yes");
    else
        System.out.println("No");
}
 
// Driver code
public static void main(String[] args)
{
    int N = 3;
     
    checkExpression(N);
}
}
 
// This code is contributed by shivanisinghss2110

Python3




# Python3 implementation to check
# the following expression for
# an integer N is valid or not
 
# Function to check if a number
# holds the condition
# (N-1)! % N = N - 1
def isPrime(n):
     
    # Corner cases
    if (n == 1):
        return True
    if (n <= 3):
        return True
 
    # Number divisible by 2
    # or 3 are not prime
    if ((n % 2 == 0) or (n % 3 == 0)):
        return False
 
    # Iterate from 5 and keep
    # checking for prime
    i = 5
    while (i * i <= n):
        if ((n % i == 0) or
            (n % (i + 2) == 0)):
            return False;
            i += 6
 
    return true;
 
# Function to check the
# expression for the value N
def checkExpression(n):
     
    if (isPrime(n)):
        print("Yes")
    else:
        print("No")
 
# Driver code
if __name__ == '__main__':
     
    N = 3
     
    checkExpression(N)
 
# This code is contributed by jana_sayantan

C#




// C# implementation to check
// the following expression for
// an integer N is valid or not
using System;
class GFG{
 
// Function to check if a number
// holds the condition
// (N-1)! % N = N - 1
static bool isPrime(int n)
{
     
    // Corner cases
    if (n == 1)
        return true;
    if (n <= 3)
        return true;
 
    // Number divisible by 2
    // or 3 are not prime
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    // Iterate from 5 and keep
    // checking for prime
    for(int i = 5; i * i <= n; i = i + 6)
       if (n % i == 0 || n % (i + 2) == 0)
           return false;
             
    return true;
}
 
// Function to check the
// expression for the value N
static void checkExpression(int n)
{
    if (isPrime(n))
        Console.Write("Yes");
    else
        Console.Write("No");
}
 
// Driver code
public static void Main()
{
    int N = 3;
     
    checkExpression(N);
}
}
 
// This code is contributed by Code_Mech

Javascript




<script>
 
    // Javascript implementation to check
    // the following expression for
    // an integer N is valid or not
 
    // Function to check if a number
    // holds the condition
    // (N-1)! % N = N - 1
    function isPrime(n)
    {
        // Corner cases
        if (n == 1)
            return true;
        if (n <= 3)
            return true;
 
        // Number divisible by 2
        // or 3 are not prime
        if (n % 2 == 0 || n % 3 == 0)
            return false;
 
        // Iterate from 5 and keep
        // checking for prime
        for (let i = 5; i * i <= n; i = i + 6)
 
            if (n % i == 0
                || n % (i + 2) == 0)
                return false;
 
        return true;
    }
 
    // Function to check the
    // expression for the value N
    function checkExpression(n)
    {
        if (isPrime(n))
            document.write("Yes");
        else
            document.write("No");
    }
     
    let N = 3;
    checkExpression(N);
 
</script>
Output: 
Yes

Time Complexity: O(sqrt(N))
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :