Skip to content
Related Articles

Related Articles

Improve Article

Check if the product of every contiguous subsequence is different or not in a number

  • Difficulty Level : Medium
  • Last Updated : 09 Jun, 2021
Geek Week

Given an integer N, the task is to check if the product of every consecutive set of digits is distinct or not.

Examples: 

Input: N = 234 
Output: Yes 
 

SetProduct
{2}2
{2, 3}2 * 3 = 6
{2, 3, 4}2 * 3 * 4 = 24
{3}3
{3, 4}3 * 4 = 12
{4}4

All the productas are distinct.

Input: N = 1234 
Output: No 
Set {1, 2} and {2} both the same product i.e. 2. 
 



Approach: Store the product of digits of every contiguous subsequence in a set. If the product to be inserted is already present in the set at any point then the answer is “No” else all the product are distinct in the end.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if the product
// of every digit of a contiguous subsequence
// is distinct
bool productsDistinct(int N)
{
    // To store the given number as a string
    string s = "";
 
    // Append all the digits
    // starting from the end
    while (N) {
        s += (char)(N % 10 + '0');
        N /= 10;
    }
 
    // Reverse the string to get
    // the  original number
    reverse(s.begin(), s.end());
 
    // Store size of the string
    int sz = s.size();
 
    // Set to store product of
    // each contiguous subsequence
    set<int> se;
 
    // Find product of every
    // contiguous subsequence
    for (int i = 0; i < sz; i++) {
        int product = 1;
        for (int j = i; j < sz; j++) {
            product *= (int)(s[j] - '0');
 
            // If current product already
            // exists in the set
            if (se.find(product) != se.end())
                return false;
            else
                se.insert(product);
        }
    }
 
    return true;
}
 
// Driver code
int main()
{
    int N = 2345;
 
    if (productsDistinct(N))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function that returns true if
// the product of every digit of a
// contiguous subsequence is distinct
static boolean productsDistinct(int N)
{
     
    // To store the given number
    // as a string
    String s = "";
 
    // Append all the digits
    // starting from the end
    while (N > 0)
    {
        s += (char)(N % 10 + '0');
        N /= 10;
    }
 
    // Reverse the string to get
    // the original number
    s = reverse(s);
 
    // Store size of the string
    int sz = s.length();
 
    // Set to store product of
    // each contiguous subsequence
    HashSet<Integer> se = new HashSet<Integer>();
 
    // Find product of every
    // contiguous subsequence
    for (int i = 0; i < sz; i++)
    {
        int product = 1;
        for (int j = i; j < sz; j++)
        {
            product *= (int)(s.charAt(j) - '0');
 
            // If current product already
            // exists in the set
            if (se.contains(product))
                return false;
            else
                se.add(product);
        }
    }
    return true;
}
 
static String reverse(String input)
{
    char[] a = input.toCharArray();
    int l, r;
    r = a.length - 1;
    for (l = 0; l < r; l++, r--)
    {
        // Swap values of l and r
        char temp = a[l];
        a[l] = a[r];
        a[r] = temp;
    }
    return String.valueOf(a);
}
 
// Driver code
public static void main(String[] args)
{
    int N = 2345;
 
    if (productsDistinct(N))
        System.out.println("Yes");
    else
        System.out.println("No");
    }
}
 
// This code is contributed
// by PrinciRaj1992

Python3




# Python 3 implementation of the approach
 
# Function that returns true if the product
# of every digit of a contiguous subsequence
# is distinct
def productsDistinct(N):
      
    # To store the given number as a string
    s = ""
 
    # Append all the digits
    # starting from the end
    while (N):
        s += chr(N % 10 + ord('0'))
        N //= 10
 
    # Reverse the string to get
    # the original number
    s = s[::-1]
 
    # Store size of the string
    sz = len(s)
 
    # Set to store product of
    # each contiguous subsequence
    se = []
 
    # Find product of every
    # contiguous subsequence
    for i in range(sz):
        product = 1
        for j in range(i, sz, 1):
            product *= ord(s[j]) - ord('0')
 
            # If current product already
            # exists in the set
            for p in range(len(se)):
                if se[p] == product:
                    return False
                else:
                    se.append(product)
 
    return True
 
# Driver code
if __name__ == '__main__':
    N = 2345
 
    if (productsDistinct(N)):
        print("Yes")
    else:
        print("No")
         
# This code is contributed by
# Surendra_Gangwar

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function that returns true if
// the product of every digit of a
// contiguous subsequence is distinct
static Boolean productsDistinct(int N)
{
     
    // To store the given number
    // as a string
    String s = "";
 
    // Append all the digits
    // starting from the end
    while (N > 0)
    {
        s += (char)(N % 10 + '0');
        N /= 10;
    }
 
    // Reverse the string to get
    // the original number
    s = reverse(s);
 
    // Store size of the string
    int sz = s.Length;
 
    // Set to store product of
    // each contiguous subsequence
    HashSet<int> se = new HashSet<int>();
 
    // Find product of every
    // contiguous subsequence
    for (int i = 0; i < sz; i++)
    {
        int product = 1;
        for (int j = i; j < sz; j++)
        {
            product *= (int)(s[j] - '0');
 
            // If current product already
            // exists in the set
            if (se.Contains(product))
                return false;
            else
                se.Add(product);
        }
    }
    return true;
}
 
static String reverse(String input)
{
    char[] a = input.ToCharArray();
    int l, r;
    r = a.Length - 1;
    for (l = 0; l < r; l++, r--)
    {
        // Swap values of l and r
        char temp = a[l];
        a[l] = a[r];
        a[r] = temp;
    }
    return String.Join("",a);
}
 
// Driver code
public static void Main(String[] args)
{
    int N = 2345;
 
    if (productsDistinct(N))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function that returns true if the product
// of every digit of a contiguous subsequence
// is distinct
function productsDistinct(N)
{
     
    // To store the given number as a string
    var s = "";
 
    // Append all the digits
    // starting from the end
    while (N)
    {
        s += String.fromCharCode(
            N % 10 + '0'.charCodeAt(0));
        N = parseInt(N / 10);
    }
 
    // Reverse the string to get
    // the  original number
    s = s.split('').reverse().join('');
 
    // Store size of the string
    var sz = s.length;
 
    // Set to store product of
    // each contiguous subsequence
    var se = new Set();
 
    // Find product of every
    // contiguous subsequence
    for(var i = 0; i < sz; i++)
    {
        var product = 1;
        for(var j = i; j < sz; j++)
        {
            product *= (s[j].charCodeAt(0) -
                         '0'.charCodeAt(0));
 
            // If current product already
            // exists in the set
            if (se.has(product))
                return false;
            else
                se.add(product);
        }
    }
    return true;
}
 
// Driver code
var N = 2345;
if (productsDistinct(N))
    document.write("Yes");
else
    document.write("No");
 
// This code is contributed by rrrtnx
 
</script>
Output: 
Yes

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :