Check if the product of every contiguous subsequence is different or not in a number

Given an integer N, the task is to check if the product of every consecutive set of digits is distinct or not.

Examples:

Input: N = 234
Output: Yes

Set Product
{2} 2
{2, 3} 2 * 3 = 6
{2, 3, 4} 2 * 3 * 4 = 24
{3} 3
{3, 4} 3 * 4 = 12
{4} 4

All the productas are distinct.

Input: N = 1234
Output: No
Set {1, 2} and {2} both the same product i.e. 2.

Approach: Store the product of digits of every contiguous subsequence in a set. If the product to be inserted is already present in the set at any point then the answer is “No” else all the product are distinct in the end.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function that returns true if the product
// of every digit of a contiguous subsequence
// is distinct
bool productsDistinct(int N)
{
    // To store the given number as a string
    string s = "";
  
    // Append all the digits
    // starting from the end
    while (N) {
        s += (char)(N % 10 + '0');
        N /= 10;
    }
  
    // Reverse the string to get
    // the  original number
    reverse(s.begin(), s.end());
  
    // Store size of the string
    int sz = s.size();
  
    // Set to store product of
    // each contiguous subsequence
    set<int> se;
  
    // Find product of every
    // contiguous subsequence
    for (int i = 0; i < sz; i++) {
        int product = 1;
        for (int j = i; j < sz; j++) {
            product *= (int)(s[j] - '0');
  
            // If current product already
            // exists in the set
            if (se.find(product) != se.end())
                return false;
            else
                se.insert(product);
        }
    }
  
    return true;
}
  
// Driver code
int main()
{
    int N = 2345;
  
    if (productsDistinct(N))
        cout << "Yes";
    else
        cout << "No";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class GFG 
{
  
// Function that returns true if 
// the product of every digit of a 
// contiguous subsequence is distinct
static boolean productsDistinct(int N)
{
      
    // To store the given number
    // as a string
    String s = "";
  
    // Append all the digits
    // starting from the end
    while (N > 0
    {
        s += (char)(N % 10 + '0');
        N /= 10;
    }
  
    // Reverse the string to get
    // the original number
    s = reverse(s);
  
    // Store size of the string
    int sz = s.length();
  
    // Set to store product of
    // each contiguous subsequence
    HashSet<Integer> se = new HashSet<Integer>();
  
    // Find product of every
    // contiguous subsequence
    for (int i = 0; i < sz; i++) 
    {
        int product = 1;
        for (int j = i; j < sz; j++) 
        {
            product *= (int)(s.charAt(j) - '0');
  
            // If current product already
            // exists in the set
            if (se.contains(product))
                return false;
            else
                se.add(product);
        }
    }
    return true;
}
  
static String reverse(String input)
{
    char[] a = input.toCharArray();
    int l, r;
    r = a.length - 1;
    for (l = 0; l < r; l++, r--) 
    {
        // Swap values of l and r 
        char temp = a[l];
        a[l] = a[r];
        a[r] = temp;
    }
    return String.valueOf(a);
  
// Driver code
public static void main(String[] args) 
{
    int N = 2345;
  
    if (productsDistinct(N))
        System.out.println("Yes");
    else
        System.out.println("No");
    }
}
  
// This code is contributed 
// by PrinciRaj1992 

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the approach
  
# Function that returns true if the product
# of every digit of a contiguous subsequence
# is distinct
def productsDistinct(N):
       
    # To store the given number as a string
    s = ""
  
    # Append all the digits
    # starting from the end
    while (N):
        s += chr(N % 10 + ord('0'))
        N //= 10
  
    # Reverse the string to get
    # the original number
    s = s[::-1]
  
    # Store size of the string
    sz = len(s)
  
    # Set to store product of
    # each contiguous subsequence
    se = []
  
    # Find product of every
    # contiguous subsequence
    for i in range(sz):
        product = 1
        for j in range(i, sz, 1):
            product *= ord(s[j]) - ord('0')
  
            # If current product already
            # exists in the set
            for p in range(len(se)):
                if se[p] == product:
                    return False
                else:
                    se.append(product)
  
    return True
  
# Driver code
if __name__ == '__main__':
    N = 2345
  
    if (productsDistinct(N)):
        print("Yes")
    else:
        print("No")
          
# This code is contributed by
# Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
using System.Collections.Generic; 
  
class GFG 
{
  
// Function that returns true if 
// the product of every digit of a 
// contiguous subsequence is distinct
static Boolean productsDistinct(int N)
{
      
    // To store the given number
    // as a string
    String s = "";
  
    // Append all the digits
    // starting from the end
    while (N > 0) 
    {
        s += (char)(N % 10 + '0');
        N /= 10;
    }
  
    // Reverse the string to get
    // the original number
    s = reverse(s);
  
    // Store size of the string
    int sz = s.Length;
  
    // Set to store product of
    // each contiguous subsequence
    HashSet<int> se = new HashSet<int>();
  
    // Find product of every
    // contiguous subsequence
    for (int i = 0; i < sz; i++) 
    {
        int product = 1;
        for (int j = i; j < sz; j++) 
        {
            product *= (int)(s[j] - '0');
  
            // If current product already
            // exists in the set
            if (se.Contains(product))
                return false;
            else
                se.Add(product);
        }
    }
    return true;
}
  
static String reverse(String input)
{
    char[] a = input.ToCharArray();
    int l, r;
    r = a.Length - 1;
    for (l = 0; l < r; l++, r--) 
    {
        // Swap values of l and r 
        char temp = a[l];
        a[l] = a[r];
        a[r] = temp;
    }
    return String.Join("",a);
  
// Driver code
public static void Main(String[] args) 
{
    int N = 2345;
  
    if (productsDistinct(N))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Output:

Yes


My Personal Notes arrow_drop_up

pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.