# Check if the number is divisible 43 or not

Given a number N, the task is to check whether the number is divisible by 43 or not.

Examples:

Input: N = 2795
Output: yes
Explanation:
43 * 65 = 2795

Input: N = 11094
Output: yes
Explanation:
43 * 258 = 11094

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The divisibility test of 43 is:

1. Extract the last digit.
2. Add 13 * last digit from the remaining number obtained after removing the last digit.
3. Repeat the above steps until a two-digit number, or zero, is obtained.
4. If the two-digit number is divisible by 43, or it is 0, then the original number is also divisible by 43.

For example:

```If N = 11739

Step 1:
N = 11739
Last digit = 9
Remaining number = 1173
Resultant number = 1173 + 13*9 = 1290

Step 2:
N = 1290
Since 129 is divisible by 43 as 43 * 3 = 129

Therefore N = 11739 is also divisible by 43
```

Below is the implementation of the above approach:

## C++

 `// C++ program to check whether a number ` `// is divisible by 43 or not ` ` `  `#include ` `#include ` ` `  `using` `namespace` `std; ` `// Function to check if the number is  divisible by 43 or not  ` `bool` `isDivisible(``int` `n)   ` `{ ` `    ``int` `d; ` `    ``// While there are at least two digits  ` `    ``while` `(n / 100)  ` `    ``{ ` `  `  `        ``// Extracting the last  ` `        ``d = n % 10; ` `  `  `        ``// Truncating the number  ` `        ``n /= 10; ` `  `  `        ``// adding thirteen times the last  ` `        ``// digit to the remaining number  ` `        ``n = ``abs``(n+(d * 13)); ` `    ``} ` `    ``// Finally return if the two-digit ` `    ``// number is divisible by 43 or not ` `    ``return` `(n % 43 == 0) ; ` `} ` ` `  `// Driver Code  ` `int` `main() { ` `    ``int` `N = 2795; ` `  `  `    ``if` `(isDivisible(N))  ` `        ``cout<<``"Yes"``<

## Java

 `// Java program to check whether a number ` `// is divisible by 43 or not ` `class` `GFG ` `{ ` ` `  `// Function to check if the number is  divisible by 43 or not  ` `static` `boolean` `isDivisible(``int` `n)   ` `{ ` `    ``int` `d; ` `    ``// While there are at least two digits  ` `    ``while` `((n / ``100``) > ``0``)  ` `    ``{ ` `   `  `        ``// Extracting the last  ` `        ``d = n % ``10``; ` `   `  `        ``// Truncating the number  ` `        ``n /= ``10``; ` `   `  `        ``// adding thirteen times the last  ` `        ``// digit to the remaining number  ` `        ``n = Math.abs(n+(d * ``13``)); ` `    ``} ` `    ``// Finally return if the two-digit ` `    ``// number is divisible by 43 or not ` `    ``return` `(n % ``43` `== ``0``) ; ` `} ` `  `  `// Driver Code  ` `public` `static` `void` `main(String[] args) { ` `    ``int` `N = ``2795``; ` `   `  `    ``if` `(isDivisible(N))  ` `        ``System.out.print(``"Yes"``); ` `    ``else` `        ``System.out.print(``"No"``); ` `     `  ` ``}      ` `}     ` `  `  `// This code is contributed by PrinciRaj1992 `

## Python 3

 `# Python program to check whether a number ` `# is divisible by 43 or not ` ` `  `# Function to check if the number is  ` `# divisible by 43 or not  ` `def` `isDivisible(n) :  ` ` `  `    ``# While there are at least two digits  ` `    ``while` `n ``/``/` `100` `:  ` ` `  `        ``# Extracting the last  ` `        ``d ``=` `n ``%` `10` ` `  `        ``# Truncating the number  ` `        ``n ``/``/``=` `10` ` `  `        ``# Adding thirteen  times the last  ` `        ``# digit to the remaining number  ` `        ``n ``=` `abs``(n``+``(d ``*` `13``)) ` ` `  `    ``# Finally return if the two-digit ` `    ``# number is divisible by 43 or not ` `    ``return` `(n ``%` `43` `=``=` `0``)  ` ` `  `# Driver Code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` `     `  `    ``N ``=` `2795` ` `  `    ``if` `(isDivisible(N)):  ` `        ``print``(``"Yes"``)  ` `    ``else` `:  ` `        ``print``(``"No"``)  `

## C#

 `// C# program to check whether a number ` `// is divisible by 43 or not ` `using` `System;  ` `         `  `class` `GFG  ` `{  ` `     `  `// Function to check if the number is divisible by 43 or not  ` `static` `bool` `isDivisible(``int` `n)  ` `{ ` `    ``int` `d; ` `     `  `    ``// While there are at least two digits  ` `    ``while` `(n / 100 > 0)  ` `    ``{ ` ` `  `        ``// Extracting the last  ` `        ``d = n % 10; ` ` `  `        ``// Truncating the number  ` `        ``n /= 10; ` ` `  `        ``// adding thirteen times the last  ` `        ``// digit to the remaining number  ` `        ``n = Math.Abs(n + (d * 13)); ` `    ``} ` `     `  `    ``// Finally return if the two-digit ` `    ``// number is divisible by 43 or not ` `    ``return` `(n % 43 == 0) ; ` `} ` ` `  `// Driver Code  ` `public` `static` `void` `Main()  ` `{  ` `    ``int` `N = 2795; ` ` `  `    ``if` `(isDivisible(N))  ` `        ``Console.WriteLine(``"Yes"``);  ` `    ``else` `        ``Console.WriteLine(``"No"``);      ` `}  ` `} ` ` `  `// This code is contributed by AbhiThakur `

Output:

```Yes
```

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.