Skip to content
Related Articles

Related Articles

Improve Article

Check if the level order traversal of a Binary Tree results in a palindrome

  • Last Updated : 22 Jun, 2021

Given a binary tree and the task if to check if it’s level order traversal results in a palindrome or not.
Examples: 
 

Input: 
 

Output: Yes 
RADAR is the level order traversal of the 
given tree which is a palindrome.
Input: 
 



Output: No 
 

 

Approach: 
 

  • Traverse the Binary Tree in level order and store the nodes in a stack.
  • Traverse the Binary Tree in level order once again and compare the data in the node with the data at top of stack.
  • In case there is a match, move on to the next node.
  • In case there is a mismatch, stop and print No.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Structure for a node of the tree
struct node {
    char data;
    node *left, *right;
};
 
// Function to add a node
// to the Binary Tree
node* add(char data)
{
    node* newnode = new node;
    newnode->data = data;
    newnode->left = newnode->right = NULL;
    return newnode;
}
 
// Function to perform level order traversal
// of the Binary Tree and add the nodes to
// the stack
void findInv(node* root, stack<node*>& S)
{
    if (root == NULL)
        return;
 
    // The queue holds the nodes which are being
    // processed starting from the root
    queue<node*> Q;
    Q.push(root);
    while (Q.size()) {
        node* temp = Q.front();
        Q.pop();
 
        // Take the node out of the Queue
        // and push it to the stack
        S.push(temp);
 
        // If there is a left child
        // then push it to the queue
        if (temp->left != NULL)
            Q.push(temp->left);
 
        // If there is a right child
        // then push it to the queue
        if (temp->right != NULL)
            Q.push(temp->right);
    }
}
 
// Function that returns true if the
// level order traversal of the
// tree results in a palindrome
bool isPalindrome(stack<node*> S, node* root)
{
    queue<node*> Q;
    Q.push(root);
    while (Q.size()) {
 
        // To store the element at
        // the front of the queue
        node* temp = Q.front();
 
        // To store the element at
        // the top of the stack
        node* temp1 = S.top();
        S.pop();
        Q.pop();
 
        // If the data in the node at the top
        // of stack does not match the data
        // in the node at the front of the queue
        if (temp->data != temp1->data)
            return false;
        if (temp->left != NULL)
            Q.push(temp->left);
        if (temp->right != NULL)
            Q.push(temp->right);
    }
 
    // If there is no mismatch
    return true;
}
 
// Driver code
int main()
{
 
    // Creating the binary tree
    node* root = add('R');
    root->left = add('A');
    root->right = add('D');
    root->left->left = add('A');
    root->left->right = add('R');
 
    // Stack to store the nodes of the
    // tree in level order traversal
    stack<node*> S;
    findInv(root, S);
 
    // If the level order traversal
    // results in a palindrome
    if (isPalindrome(S, root))
        cout << "Yes";
    else
        cout << "NO";
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Structure for a node of the tree
static class node
{
    char data;
    node left, right;
};
 
// Function to add a node
// to the Binary Tree
static node add(char data)
{
    node newnode = new node();
    newnode.data = data;
    newnode.left = newnode.right = null;
    return newnode;
}
 
// Function to perform level order traversal
// of the Binary Tree and add the nodes to
// the stack
static void findInv(node root, Stack<node> S)
{
    if (root == null)
        return;
 
    // The queue holds the nodes which are being
    // processed starting from the root
    Queue<node> Q = new LinkedList<>();
    Q.add(root);
    while (Q.size() > 0)
    {
        node temp = Q.peek();
        Q.remove();
 
        // Take the node out of the Queue
        // and push it to the stack
        S.add(temp);
 
        // If there is a left child
        // then push it to the queue
        if (temp.left != null)
            Q.add(temp.left);
 
        // If there is a right child
        // then push it to the queue
        if (temp.right != null)
            Q.add(temp.right);
    }
}
 
// Function that returns true if the
// level order traversal of the
// tree results in a palindrome
static boolean isPalindrome(Stack<node> S, node root)
{
    Queue<node> Q = new LinkedList<>();
    Q.add(root);
    while (Q.size() > 0)
    {
 
        // To store the element at
        // the front of the queue
        node temp = Q.peek();
 
        // To store the element at
        // the top of the stack
        node temp1 = S.peek();
        S.pop();
        Q.remove();
 
        // If the data in the node at the top
        // of stack does not match the data
        // in the node at the front of the queue
        if (temp.data != temp1.data)
            return false;
        if (temp.left != null)
            Q.add(temp.left);
        if (temp.right != null)
            Q.add(temp.right);
    }
 
    // If there is no mismatch
    return true;
}
 
// Driver code
public static void main(String[] args)
{
 
    // Creating the binary tree
    node root = add('R');
    root.left = add('A');
    root.right = add('D');
    root.left.left = add('A');
    root.left.right = add('R');
 
    // Stack to store the nodes of the
    // tree in level order traversal
    Stack<node> S = new Stack<node>();
    findInv(root, S);
 
    // If the level order traversal
    // results in a palindrome
    if (isPalindrome(S, root))
        System.out.print("Yes");
    else
        System.out.print("NO");
}
}
 
// This code is contributed by 29AjayKumar

Python




# Python implementation of the approach
 
# Linked List node
class Node:
    def __init__(self, data):
        self.info = data
        self.left = None
        self.right = None
 
# Function to append a node
# to the Binary Tree
def append(data):
 
    newnode = Node(0)
    newnode.data = data
    newnode.left = newnode.right = None
    return newnode
 
# Function to perform level order traversal
# of the Binary Tree and append the nodes to
# the stack
def findInv(root, S):
 
    if (root == None):
        return
 
    # The queue holds the nodes which are being
    # processed starting from the root
    Q = []
    Q.append(root)
    while (len(Q) > 0) :
     
        temp = Q[0]
        Q.pop(0)
 
        # Take the node out of the Queue
        # and push it to the stack
        S.append(temp)
 
        # If there is a left child
        # then push it to the queue
        if (temp.left != None):
            Q.append(temp.left)
 
        # If there is a right child
        # then push it to the queue
        if (temp.right != None):
            Q.append(temp.right)
     
# Function that returns True if the
# level order traversal of the
# tree results in a palindrome
def isPalindrome(S,root):
 
    Q = []
    Q.append(root)
    while (len(Q) > 0) :
     
        # To store the element at
        # the front of the queue
        temp = Q[0]
 
        # To store the element at
        # the top of the stack
        temp1 = S[-1]
        S.pop()
        Q.pop(0)
 
        # If the data in the node at the top
        # of stack does not match the data
        # in the node at the front of the queue
        if (temp.data != temp1.data):
            return False
        if (temp.left != None):
            Q.append(temp.left)
        if (temp.right != None):
            Q.append(temp.right)
 
    # If there is no mismatch
    return True
 
# Driver code
 
# Creating the binary tree
root = append('R')
root.left = append('A')
root.right = append('D')
root.left.left = append('A')
root.left.right = append('R')
 
# Stack to store the nodes of the
# tree in level order traversal
S = []
findInv(root, S)
 
# If the level order traversal
# results in a palindrome
if (isPalindrome(S, root)):
    print("Yes")
else:
    print("NO")
 
# This code is contributed by Arnab Kundu

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Structure for a node of the tree
class node
{
    public char data;
    public node left, right;
};
 
// Function to.Add a node
// to the Binary Tree
static node add(char data)
{
    node newnode = new node();
    newnode.data = data;
    newnode.left = newnode.right = null;
    return newnode;
}
 
// Function to perform level order traversal
// of the Binary Tree and.Add the nodes to
// the stack
static void findInv(node root, Stack<node> S)
{
    if (root == null)
        return;
 
    // The queue holds the nodes which are being
    // processed starting from the root
    Queue<node> Q = new Queue<node>();
    Q.Enqueue(root);
    while (Q.Count > 0)
    {
        node temp = Q.Peek();
        Q.Dequeue();
 
        // Take the node out of the Queue
        // and push it to the stack
        S.Push(temp);
 
        // If there is a left child
        // then push it to the queue
        if (temp.left != null)
            Q.Enqueue(temp.left);
 
        // If there is a right child
        // then push it to the queue
        if (temp.right != null)
            Q.Enqueue(temp.right);
    }
}
 
// Function that returns true if the
// level order traversal of the
// tree results in a palindrome
static bool isPalindrome(Stack<node> S,
                               node root)
{
    Queue<node> Q = new Queue<node>();
    Q.Enqueue(root);
    while (Q.Count > 0)
    {
 
        // To store the element at
        // the front of the queue
        node temp = Q.Peek();
 
        // To store the element at
        // the top of the stack
        node temp1 = S.Peek();
        S.Pop();
        Q.Dequeue();
 
        // If the data in the node at the top
        // of stack does not match the data
        // in the node at the front of the queue
        if (temp.data != temp1.data)
            return false;
        if (temp.left != null)
            Q.Enqueue(temp.left);
        if (temp.right != null)
            Q.Enqueue(temp.right);
    }
 
    // If there is no mismatch
    return true;
}
 
// Driver code
public static void Main(String[] args)
{
 
    // Creating the binary tree
    node root = add('R');
    root.left = add('A');
    root.right = add('D');
    root.left.left = add('A');
    root.left.right = add('R');
 
    // Stack to store the nodes of the
    // tree in level order traversal
    Stack<node> S = new Stack<node>();
    findInv(root, S);
 
    // If the level order traversal
    // results in a palindrome
    if (isPalindrome(S, root))
        Console.Write("Yes");
    else
        Console.Write("NO");
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// JavaScript implementation of the approach
 
// Structure for a node of the tree
class node
{
    constructor()
    {
        this.data = '';
        this.left = null;
        this.right = null;
    }
};
 
// Function to.Add a node
// to the Binary Tree
function add(data)
{
    var newnode = new node();
    newnode.data = data;
    newnode.left = newnode.right = null;
    return newnode;
}
 
// Function to perform level order traversal
// of the Binary Tree and.Add the nodes to
// the stack
function findInv(root, S)
{
    if (root == null)
        return;
 
    // The queue holds the nodes which are being
    // processed starting from the root
    var Q = [];
    Q.push(root);
    while (Q.length > 0)
    {
        var temp = Q[0];
        Q.shift();
 
        // Take the node out of the Queue
        // and push it to the stack
        S.push(temp);
 
        // If there is a left child
        // then push it to the queue
        if (temp.left != null)
            Q.push(temp.left);
 
        // If there is a right child
        // then push it to the queue
        if (temp.right != null)
            Q.push(temp.right);
    }
}
 
// Function that returns true if the
// level order traversal of the
// tree results in a palindrome
function isPalindrome(S, root)
{
    var Q = [];
    Q.push(root);
    while (Q.length > 0)
    {
 
        // To store the element at
        // the front of the queue
        var temp = Q[0];
 
        // To store the element at
        // the top of the stack
        var temp1 = S[S.length-1];
        S.pop();
        Q.shift();
 
        // If the data in the node at the top
        // of stack does not match the data
        // in the node at the front of the queue
        if (temp.data != temp1.data)
            return false;
        if (temp.left != null)
            Q.push(temp.left);
        if (temp.right != null)
            Q.push(temp.right);
    }
 
    // If there is no mismatch
    return true;
}
 
// Driver code
// Creating the binary tree
var root = add('R');
root.left = add('A');
root.right = add('D');
root.left.left = add('A');
root.left.right = add('R');
// Stack to store the nodes of the
// tree in level order traversal
var S = [];
findInv(root, S);
// If the level order traversal
// results in a palindrome
if (isPalindrome(S, root))
    document.write("Yes");
else
    document.write("NO");
 
 
</script>
Output: 
Yes

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :