# Check if the given number is divisible by 71 or not

Given a number N, the task is to check whether the number is divisible by 71 or not.

Examples:

Input: N = 25411681
Output: yes
Explanation:
71 * 357911 = 25411681

Input: N = 5041
Output: yes
Explanation:
71 * 71 = 5041

Approach: The divisibility test of 71 is:

1. Extract the last digit.
2. Subtract 7 * last digit from the remaining number obtained after removing the last digit.
3. Repeat the above steps until a two-digit number, or zero, is obtained.
4. If the two-digit number is divisible by 71, or it is 0, then the original number is also divisible by 71.

For example:

```If N = 5041

Step 1:
N = 5041
Last digit = 1
Remaining number = 504
Subtracting 7 times last digit
Resultant number = 504 - 7*1 = 497

Step 2:
N = 497
Last digit = 7
Remaining number = 49
Subtracting 7 times last digit
Resultant number = 49 - 7*7 = 0

Step 3:
N = 0
Since N is a two-digit number,
and 0 is divisible by 71

Therefore N = 5041 is also divisible by 71```

Below is the implementation of the above approach:

## C++

 `// C++ program to check whether a number` `// is divisible by 71 or not` `#include` `#include`   `using` `namespace` `std;`   `// Function to check if the number is divisible by 71 or not ` `bool` `isDivisible(``int` `n) ` `{` `    ``int` `d;` `    ``// While there are at least two digits ` `    ``while` `(n / 100) ` `    ``{`   `        ``// Extracting the last ` `        ``d = n % 10;`   `        ``// Truncating the number ` `        ``n /= 10;`   `        ``// Subtracting seven times the last ` `        ``// digit to the remaining number ` `        ``n = ``abs``(n - (d * 7));` `    ``}` `    ``// Finally return if the two-digit` `    ``// number is divisible by 71 or not` `    ``return` `(n % 71 == 0) ;` `}`   `// Driver Code ` `int` `main() {` `    ``int` `N = 5041;`   `    ``if` `(isDivisible(N)) ` `        ``cout << ``"Yes"` `<< endl ;` `    ``else` `        ``cout << ``"No"` `<< endl ;` `    `  `    ``return` `0;     ` `} `   `// This code is contributed by ANKITKUMAR34`

## Java

 `// Java program to check whether a number` `// is divisible by 71 or not` `import` `java.util.*;`   `class` `GFG{`   `// Function to check if the number is divisible by 71 or not ` `    ``static` `boolean` `isDivisible(``int` `n) ` `    ``{` `        ``int` `d;` `        ``// While there are at least two digits ` `        ``while` `((n / ``100``) <=``0``)` `        ``{` `    `  `            ``// Extracting the last ` `            ``d = n % ``10``;` `    `  `            ``// Truncating the number ` `            ``n /= ``10``;` `    `  `            ``// Subtracting seven times the last ` `            ``// digit to the remaining number ` `            ``n = Math.abs(n - (d * ``7``));` `        ``}`   `        ``// Finally return if the two-digit` `        ``// number is divisible by 71 or not` `        ``return` `(n % ``71` `== ``0``) ;` `    ``}` `    `  `    ``// Driver Code ` `    ``public` `static` `void` `main(String args[]){` `        ``int` `N = ``5041``;` `    `  `        ``if` `(isDivisible(N)) ` `            ``System.out.println(``"Yes"``) ;` `        ``else` `            ``System.out.println(``"No"``);` `    ``} ` `}`   `// This code is contributed by AbhiThakur`

## Python 3

 `# Python program to check whether a number` `# is divisible by 71 or not`   `# Function to check if the number is ` `# divisible by 71 or not ` `def` `isDivisible(n) : `   `    ``# While there are at least two digits ` `    ``while` `n ``/``/` `100` `: `   `        ``# Extracting the last ` `        ``d ``=` `n ``%` `10`   `        ``# Truncating the number ` `        ``n ``/``/``=` `10`   `        ``# Subtracting seven times the last ` `        ``# digit to the remaining number ` `        ``n ``=` `abs``(n``-``(d ``*` `7``))`   `    ``# Finally return if the two-digit` `    ``# number is divisible by 71 or not` `    ``return` `(n ``%` `71` `=``=` `0``) `   `# Driver Code ` `if` `__name__ ``=``=` `"__main__"` `: ` `    `  `    ``N ``=` `5041`   `    ``if` `(isDivisible(N)) : ` `        ``print``(``"Yes"``) ` `    ``else` `: ` `        ``print``(``"No"``) `

## C#

 `// C# program to check whether a number` `// is divisible by 71 or not` `using` `System; ` `        `  `class` `GFG ` `{ ` `    `  `// Function to check if the number is divisible by 71 or not ` `static` `bool` `isDivisible(``int` `n) ` `{` `    ``int` `d;` `    ``// While there are at least two digits ` `    ``while` `(n / 100 > 0) ` `    ``{` `    `  `        ``// Extracting the last ` `        ``d = n % 10;` `    `  `        ``// Truncating the number ` `        ``n /= 10;` `    `  `        ``// Subtracting fourteen times the last ` `        ``// digit to the remaining number ` `        ``n = Math.Abs(n - (d * 7));` `    ``}` `    `  `    ``// Finally return if the two-digit` `    ``// number is divisible by 71 or not` `    ``return` `(n % 71 == 0);` `}` `    `  `// Driver Code ` `public` `static` `void` `Main() ` `{ ` `    ``int` `N = 5041;` `    `  `    ``if` `(isDivisible(N)) ` `        ``Console.WriteLine(``"Yes"``);` `    ``else` `        ``Console.WriteLine(``"No"``);` `} ` `} `   `// This code is contributed by mohit kumar 29. `

## Javascript

 ``

Output:

`Yes`

Time Complexity: O(log10N)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next