Open In App
Related Articles

Check if the given number is divisible by 71 or not

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a number N, the task is to check whether the number is divisible by 71 or not. 

Examples:  

Input: N = 25411681 
Output: yes 
Explanation: 
71 * 357911 = 25411681

Input: N = 5041 
Output: yes 
Explanation: 
71 * 71 = 5041  

Approach: The divisibility test of 71 is:  

  1. Extract the last digit.
  2. Subtract 7 * last digit from the remaining number obtained after removing the last digit.
  3. Repeat the above steps until a two-digit number, or zero, is obtained.
  4. If the two-digit number is divisible by 71, or it is 0, then the original number is also divisible by 71.

For example:  

If N = 5041

Step 1:
  N = 5041
  Last digit = 1
  Remaining number = 504
  Subtracting 7 times last digit
  Resultant number = 504 - 7*1 = 497

Step 2:
  N = 497
  Last digit = 7
  Remaining number = 49
  Subtracting 7 times last digit
  Resultant number = 49 - 7*7 = 0

Step 3:
  N = 0
  Since N is a two-digit number,
  and 0 is divisible by 71

Therefore N = 5041 is also divisible by 71

Below is the implementation of the above approach:  

C++




// C++ program to check whether a number
// is divisible by 71 or not
#include<bits/stdc++.h>
#include<stdlib.h>
 
using namespace std;
 
// Function to check if the number is divisible by 71 or not
bool isDivisible(int n)
{
    int d;
    // While there are at least two digits
    while (n / 100)
    {
 
        // Extracting the last
        d = n % 10;
 
        // Truncating the number
        n /= 10;
 
        // Subtracting seven times the last
        // digit to the remaining number
        n = abs(n - (d * 7));
    }
    // Finally return if the two-digit
    // number is divisible by 71 or not
    return (n % 71 == 0) ;
}
 
// Driver Code
int main() {
    int N = 5041;
 
    if (isDivisible(N))
        cout << "Yes" << endl ;
    else
        cout << "No" << endl ;
     
    return 0;    
}
 
// This code is contributed by ANKITKUMAR34


Java




// Java program to check whether a number
// is divisible by 71 or not
import java.util.*;
 
class GFG{
 
// Function to check if the number is divisible by 71 or not
    static boolean isDivisible(int n)
    {
        int d;
        // While there are at least two digits
        while ((n / 100) <=0)
        {
     
            // Extracting the last
            d = n % 10;
     
            // Truncating the number
            n /= 10;
     
            // Subtracting seven times the last
            // digit to the remaining number
            n = Math.abs(n - (d * 7));
        }
 
        // Finally return if the two-digit
        // number is divisible by 71 or not
        return (n % 71 == 0) ;
    }
     
    // Driver Code
    public static void main(String args[]){
        int N = 5041;
     
        if (isDivisible(N))
            System.out.println("Yes") ;
        else
            System.out.println("No");
    }
}
 
// This code is contributed by AbhiThakur


Python 3




# Python program to check whether a number
# is divisible by 71 or not
 
# Function to check if the number is
# divisible by 71 or not
def isDivisible(n) :
 
    # While there are at least two digits
    while n // 100 :
 
        # Extracting the last
        d = n % 10
 
        # Truncating the number
        n //= 10
 
        # Subtracting seven times the last
        # digit to the remaining number
        n = abs(n-(d * 7))
 
    # Finally return if the two-digit
    # number is divisible by 71 or not
    return (n % 71 == 0)
 
# Driver Code
if __name__ == "__main__" :
     
    N = 5041
 
    if (isDivisible(N)) :
        print("Yes")
    else :
        print("No")


C#




// C# program to check whether a number
// is divisible by 71 or not
using System;
         
class GFG
{
     
// Function to check if the number is divisible by 71 or not
static bool isDivisible(int n)
{
    int d;
    // While there are at least two digits
    while (n / 100 > 0)
    {
     
        // Extracting the last
        d = n % 10;
     
        // Truncating the number
        n /= 10;
     
        // Subtracting fourteen times the last
        // digit to the remaining number
        n = Math.Abs(n - (d * 7));
    }
     
    // Finally return if the two-digit
    // number is divisible by 71 or not
    return (n % 71 == 0);
}
     
// Driver Code
public static void Main()
{
    int N = 5041;
     
    if (isDivisible(N))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by mohit kumar 29.


Javascript




<script>
// Javascript program to check whether a number
// is divisible by 71 or not
 
// Function to check if the number is divisible by 71 or not
function isDivisible(n)
{
    let d;
        // While there are at least two digits
        while (Math.floor(n / 100) <=0)
        {
       
            // Extracting the last
            d = n % 10;
       
            // Truncating the number
            n = Math.floor(n/10);
       
            // Subtracting seven times the last
            // digit to the remaining number
            n = Math.abs(n - (d * 7));
        }
   
        // Finally return if the two-digit
        // number is divisible by 71 or not
        return (n % 71 == 0) ;
}
 
// Driver Code
let N = 5041;
if (isDivisible(N))
    document.write("Yes") ;
else
    document.write("No");
 
 
 
// This code is contributed by patel2127
</script>


Output: 

Yes

 

Time Complexity: O(log10N)

Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 07 Aug, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials