Given a number N, the task is to check whether the number is divisible by 71 or not.
Examples:
Input: N = 25411681
Output: yes
Explanation:
71 * 357911 = 25411681
Input: N = 5041
Output: yes
Explanation:
71 * 71 = 5041
Approach: The divisibility test of 71 is:
- Extract the last digit.
- Subtract 7 * last digit from the remaining number obtained after removing the last digit.
- Repeat the above steps until a two-digit number, or zero, is obtained.
- If the two-digit number is divisible by 71, or it is 0, then the original number is also divisible by 71.
For example:
If N = 5041
Step 1:
N = 5041
Last digit = 1
Remaining number = 504
Subtracting 7 times last digit
Resultant number = 504 - 7*1 = 497
Step 2:
N = 497
Last digit = 7
Remaining number = 49
Subtracting 7 times last digit
Resultant number = 49 - 7*7 = 0
Step 3:
N = 0
Since N is a two-digit number,
and 0 is divisible by 71
Therefore N = 5041 is also divisible by 71
Below is the implementation of the above approach:
C++
#include<bits/stdc++.h>
#include<stdlib.h>
using namespace std;
bool isDivisible( int n)
{
int d;
while (n / 100)
{
d = n % 10;
n /= 10;
n = abs (n - (d * 7));
}
return (n % 71 == 0) ;
}
int main() {
int N = 5041;
if (isDivisible(N))
cout << "Yes" << endl ;
else
cout << "No" << endl ;
return 0;
}
|
Java
import java.util.*;
class GFG{
static boolean isDivisible( int n)
{
int d;
while ((n / 100 ) <= 0 )
{
d = n % 10 ;
n /= 10 ;
n = Math.abs(n - (d * 7 ));
}
return (n % 71 == 0 ) ;
}
public static void main(String args[]){
int N = 5041 ;
if (isDivisible(N))
System.out.println( "Yes" ) ;
else
System.out.println( "No" );
}
}
|
Python 3
def isDivisible(n) :
while n / / 100 :
d = n % 10
n / / = 10
n = abs (n - (d * 7 ))
return (n % 71 = = 0 )
if __name__ = = "__main__" :
N = 5041
if (isDivisible(N)) :
print ( "Yes" )
else :
print ( "No" )
|
C#
using System;
class GFG
{
static bool isDivisible( int n)
{
int d;
while (n / 100 > 0)
{
d = n % 10;
n /= 10;
n = Math.Abs(n - (d * 7));
}
return (n % 71 == 0);
}
public static void Main()
{
int N = 5041;
if (isDivisible(N))
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
}
}
|
Javascript
<script>
function isDivisible(n)
{
let d;
while (Math.floor(n / 100) <=0)
{
d = n % 10;
n = Math.floor(n/10);
n = Math.abs(n - (d * 7));
}
return (n % 71 == 0) ;
}
let N = 5041;
if (isDivisible(N))
document.write( "Yes" ) ;
else
document.write( "No" );
</script>
|
Time Complexity: O(log10N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
07 Aug, 2022
Like Article
Save Article