Skip to content
Related Articles

Related Articles

Improve Article
Check if the given matrix is increasing row and column wise
  • Last Updated : 27 Apr, 2021

Given a matrix mat[][], the task is to check if the given matrix is strictly increasing or not. A matrix is said to be strictly increasing if all of its rows as well as all of its columns are strictly increasing.
Examples: 
 

Input: mat[][] = {{2, 10}, {11, 20}} 
Output: Yes 
All the rows and columns are strictly increasing.
Input: mat[][] = {{2, 1}, {11, 20}} 
Output: No 
First row doesn’t satisfy the required condition. 
 

 

Approach: Linearly traverse for every element and check if there are increasing row-wise and column-wise or not. The two conditions are (a[i][j] > a[i – 1][j]) and (a[i][j] > a[i][j – 1]) . If any of the two conditions fail, then the matrix is not strictly increasing. 
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define N 2
#define M 2
 
// Function that returns true if the matrix
// is strictly increasing
bool isMatrixInc(int a[N][M])
{
 
    // Check if the matrix
    // is strictly increasing
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < M; j++) {
 
            // Out of bound condition
            if (i - 1 >= 0) {
                if (a[i][j] <= a[i - 1][j])
                    return false;
            }
 
            // Out of bound condition
            if (j - 1 >= 0) {
                if (a[i][j] <= a[i][j - 1])
                    return false;
            }
        }
    }
 
    return true;
}
 
// Driver code
int main()
{
 
    int a[N][M] = { { 2, 10 },
                    { 11, 20 } };
 
    if (isMatrixInc(a))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
 
static int N = 2;
static int M = 2;
 
// Function that returns true if the matrix
// is strictly increasing
static boolean isMatrixInc(int a[][])
{
 
    // Check if the matrix
    // is strictly increasing
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < M; j++)
        {
 
            // Out of bound condition
            if (i - 1 >= 0)
            {
                if (a[i][j] <= a[i - 1][j])
                    return false;
            }
 
            // Out of bound condition
            if (j - 1 >= 0)
            {
                if (a[i][j] <= a[i][j - 1])
                    return false;
            }
        }
    }
 
    return true;
}
 
// Driver code
 
public static void main (String[] args)
{
     
    int a[][] = { { 2, 10 },
                    { 11, 20 } };
     
    if (isMatrixInc(a))
        System.out.print( "Yes");
    else
        System.out.print( "No");
}
}
 
// This code is contributed by anuj_67..

Python3




# Python3 implementation of the approach
 
N, M = 2, 2
 
# Function that returns true if the matrix
# is strictly increasing
def isMatrixInc(a) :
 
    # Check if the matrix
    # is strictly increasing
    for i in range(N) :
        for j in range(M) :
 
            # Out of bound condition
            if (i - 1 >= 0) :
                if (a[i][j] <= a[i - 1][j]) :
                    return False;
 
            # Out of bound condition
            if (j - 1 >= 0) :
                if (a[i][j] <= a[i][j - 1]) :
                    return False;
                     
    return True;
 
 
# Driver code
if __name__ == "__main__" :
 
    a = [ [ 2, 10 ],
        [11, 20 ] ];
 
    if (isMatrixInc(a)) :
        print("Yes");
    else :
        print("No");
         
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
     
class GFG
{
 
static int N = 2;
static int M = 2;
 
// Function that returns true if the matrix
// is strictly increasing
static Boolean isMatrixInc(int [,]a)
{
 
    // Check if the matrix
    // is strictly increasing
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < M; j++)
        {
 
            // Out of bound condition
            if (i - 1 >= 0)
            {
                if (a[i,j] <= a[i - 1,j])
                    return false;
            }
 
            // Out of bound condition
            if (j - 1 >= 0)
            {
                if (a[i,j] <= a[i,j - 1])
                    return false;
            }
        }
    }
 
    return true;
}
 
// Driver code
public static void Main (String[] args)
{
     
    int [,]a = { { 2, 10 },
                    { 11, 20 } };
     
    if (isMatrixInc(a))
        Console.WriteLine( "Yes");
    else
        Console.WriteLine( "No");
}
}
 
// This code is contributed by Princi Singh

Javascript




<script>
// Java Script implementation of the approach
let N = 2;
let M = 2;
 
// Function that returns true if the matrix
// is strictly increasing
function isMatrixInc(a)
{
 
    // Check if the matrix
    // is strictly increasing
    for (let i = 0; i < N; i++)
    {
        for (let j = 0; j < M; j++)
        {
 
            // Out of bound condition
            if (i - 1 >= 0)
            {
                if (a[i][j] <= a[i - 1][j])
                    return false;
            }
 
            // Out of bound condition
            if (j - 1 >= 0)
            {
                if (a[i][j] <= a[i][j - 1])
                    return false;
            }
        }
    }
 
    return true;
}
 
// Driver code
 
 
     
    let a = [[2, 10 ],
                    [ 11, 20 ]];
     
    if (isMatrixInc(a))
        document.write( "Yes");
    else
        document.write( "No");
 
// This code is contributed by sravan kumar
</script>
Output: 
Yes

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :