Check if the given graph represents a Bus Topology
Given a graph G, check if it represents a Bus Topology.
A Bus Topology is the one shown in the image below:
Examples:
Input:
Output: YES Input:
Output: NO
A graph of V vertices represents a bus topology if it satisfies the following two conditions:
- Each node except the starting end ending ones has degree 2 while the starting and ending have degree 1.
- No of edges = No of Vertices – 1.
The idea is to traverse the graph and check if it satisfies the above two conditions. If yes, then it represents a Bus Topology.
Below is the implementation of the above approach:
C++
// CPP program to check if the given graph // represents a bus topology #include <bits/stdc++.h> using namespace std; // A utility function to add an edge in an // undirected graph. void addEdge(vector< int > adj[], int u, int v) { adj[u].push_back(v); adj[v].push_back(u); } // A utility function to print the adjacency list // representation of graph void printGraph(vector< int > adj[], int V) { for ( int v = 0; v < V; ++v) { cout << "\n Adjacency list of vertex " << v << "\n head " ; for ( auto x : adj[v]) cout << "-> " << x; printf ( "\n" ); } } /* Function to return true if the graph represented by the adjacency list represents a bus topology else return false */ bool checkBusTopologyUtil(vector< int > adj[], int V, int E) { // Number of edges should be equal // to (Number of vertices - 1) if (E != (V - 1)) return false ; // a single node is termed as a bus topology if (V == 1) return true ; int * vertexDegree = new int [V + 1]; memset (vertexDegree, 0, sizeof vertexDegree); // calculate the degree of each vertex for ( int i = 1; i <= V; i++) { for ( auto v : adj[i]) { vertexDegree[v]++; } } // countDegree2 - number of vertices with degree 2 // countDegree1 - number of vertices with degree 1 int countDegree2 = 0, countDegree1 = 0; for ( int i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } else if (vertexDegree[i] == 1) { countDegree1++; } else { // if any node has degree other // than 1 or 2, it is // NOT a bus topology return false ; } } // if both necessary conditions as discussed, // satisfy return true if (countDegree1 == 2 && countDegree2 == (V - 2)) { return true ; } return false ; } // Function to check if the graph represents a bus topology void checkBusTopology(vector< int > adj[], int V, int E) { bool isBus = checkBusTopologyUtil(adj, V, E); if (isBus) { cout << "YES" << endl; } else { cout << "NO" << endl; } } // Driver code int main() { // Graph 1 int V = 5, E = 4; vector< int > adj1[V + 1]; addEdge(adj1, 1, 2); addEdge(adj1, 1, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); checkBusTopology(adj1, V, E); // Graph 2 V = 4, E = 4; vector< int > adj2[V + 1]; addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 2); checkBusTopology(adj2, V, E); return 0; } |
Java
// java program to check if the given graph // represents a bus topology import java.io.*; import java.util.*; class GFG { // A utility function to add an edge in an // undirected graph. static void addEdge(ArrayList<ArrayList<Integer>> adj, int u, int v) { adj.get(u).add(v); adj.get(v).add(u); } // A utility function to print the adjacency list // representation of graph static void printGraph(ArrayList<ArrayList<Integer>> adj, int V) { for ( int v = 0 ; v < V; ++v) { System.out.print( "\n Adjacency list of vertex " + v + "\n head " ); for ( int x : adj.get(v)) { System.out.print( "-> " + x); } System.out.println(); } } /* Function to return true if the graph represented by the adjacency list represents a bus topology else return false */ static boolean checkBusTopologyUtil(ArrayList<ArrayList<Integer>> adj, int V, int E) { // Number of edges should be equal // to (Number of vertices - 1) if (E != (V - 1 )) { return false ; } // a single node is termed as a bus topology if (V == 1 ) { return true ; } int [] vertexDegree = new int [V + 1 ]; // calculate the degree of each vertex for ( int i = 1 ; i <= V; i++) { for ( int v : adj.get(i)) { vertexDegree[v]++; } } // countDegree2 - number of vertices with degree 2 // countDegree1 - number of vertices with degree 1 int countDegree2 = 0 , countDegree1 = 0 ; for ( int i = 1 ; i <= V; i++) { if (vertexDegree[i] == 2 ) { countDegree2++; } else if (vertexDegree[i] == 1 ) { countDegree1++; } else { // if any node has degree other // than 1 or 2, it is // NOT a bus topology return false ; } } // if both necessary conditions as discussed, // satisfy return true if (countDegree1 == 2 && countDegree2 == (V - 2 )) { return true ; } return false ; } // Function to check if the graph represents a bus topology static void checkBusTopology(ArrayList<ArrayList<Integer>> adj, int V, int E) { boolean isBus = checkBusTopologyUtil(adj, V, E); if (isBus) { System.out.println( "YES" ); } else { System.out.println( "NO" ); } } // Driver code public static void main (String[] args) { // Graph 1 int V = 5 , E = 4 ; ArrayList<ArrayList<Integer>> adj1= new ArrayList<ArrayList<Integer>>(); for ( int i = 0 ; i < V + 1 ; i++) { adj1.add( new ArrayList<Integer>()); } addEdge(adj1, 1 , 2 ); addEdge(adj1, 1 , 3 ); addEdge(adj1, 3 , 4 ); addEdge(adj1, 4 , 5 ); checkBusTopology(adj1, V, E); // Graph 2 V = 4 ; E = 4 ; ArrayList<ArrayList<Integer>> adj2 = new ArrayList<ArrayList<Integer>>(); for ( int i = 0 ; i < (V + 1 ); i++) { adj2.add( new ArrayList<Integer>()); } addEdge(adj2, 1 , 2 ); addEdge(adj2, 1 , 3 ); addEdge(adj2, 3 , 4 ); addEdge(adj2, 4 , 2 ); checkBusTopology(adj2, V, E); } } // This code is contributed by rag2127 |
Python3
# Python3 program to check if the given graph # represents a bus topology # A utility function to add an edge in an # undirected graph. def addEdge(adj, u, v): adj[u].append(v) adj[v].append(u) # A utility function to print the adjacency list # representation of graph def printGraph(adj, V): for v in range (V): print ( "Adjacency list of vertex " ,v, "\n head " ) for x in adj[v]: print ( "-> " ,x,end = " " ) printf() # /* Function to return true if the graph represented # by the adjacency list represents a bus topology # else return false */ def checkBusTopologyUtil(adj, V, E): # Number of edges should be equal # to (Number of vertices - 1) if (E ! = (V - 1 )): return False # a single node is termed as a bus topology if (V = = 1 ): return True vertexDegree = [ 0 ] * (V + 1 ) # calculate the degree of each vertex for i in range (V + 1 ): for v in adj[i]: vertexDegree[v] + = 1 # countDegree2 - number of vertices with degree 2 # countDegree1 - number of vertices with degree 1 countDegree2,countDegree1 = 0 , 0 for i in range ( 1 , V + 1 ): if (vertexDegree[i] = = 2 ): countDegree2 + = 1 elif (vertexDegree[i] = = 1 ): countDegree1 + = 1 else : # if any node has degree other # than 1 or 2, it is # NOT a bus topology return False # if both necessary conditions as discussed, # satisfy return true if (countDegree1 = = 2 and countDegree2 = = (V - 2 )): return True return False # Function to check if the graph represents a bus topology def checkBusTopology(adj, V, E): isBus = checkBusTopologyUtil(adj, V, E) if (isBus): print ( "YES" ) else : print ( "NO" ) # Driver code # Graph 1 V, E = 5 , 4 adj1 = [[] for i in range (V + 1 )] addEdge(adj1, 1 , 2 ) addEdge(adj1, 1 , 3 ) addEdge(adj1, 3 , 4 ) addEdge(adj1, 4 , 5 ) checkBusTopology(adj1, V, E) # Graph 2 V, E = 4 , 4 adj2 = [[] for i in range (V + 1 )] addEdge(adj2, 1 , 2 ) addEdge(adj2, 1 , 3 ) addEdge(adj2, 3 , 4 ) addEdge(adj2, 4 , 2 ) checkBusTopology(adj2, V, E) # This code is contributed by mohit kumar 29 |
C#
// C# program to check if the given graph // represents a bus topology using System; using System.Collections.Generic; public class GFG{ // A utility function to add an edge in an // undirected graph. static void addEdge(List<List< int >> adj, int u, int v) { adj[u].Add(v); adj[v].Add(u); } // A utility function to print the adjacency list // representation of graph static void printGraph(List<List< int >> adj, int V) { for ( int v = 0; v < V; ++v) { Console.WriteLine( "\n Adjacency list of vertex " + v + "\n head " ); foreach ( int x in adj[v]) { Console.Write( "-> " + x); } Console.WriteLine(); } } /* Function to return true if the graph represented by the adjacency list represents a bus topology else return false */ static bool checkBusTopologyUtil(List<List< int >> adj, int V, int E) { // Number of edges should be equal // to (Number of vertices - 1) if (E != (V - 1)) { return false ; } // a single node is termed as a bus topology if (V == 1) { return true ; } int [] vertexDegree = new int [V + 1]; // calculate the degree of each vertex for ( int i = 1; i <= V; i++) { foreach ( int v in adj[i]) { vertexDegree[v]++; } } // countDegree2 - number of vertices with degree 2 // countDegree1 - number of vertices with degree 1 int countDegree2 = 0, countDegree1 = 0; for ( int i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } else if (vertexDegree[i] == 1) { countDegree1++; } else { // if any node has degree other // than 1 or 2, it is // NOT a bus topology return false ; } } // if both necessary conditions as discussed, // satisfy return true if (countDegree1 == 2 && countDegree2 == (V - 2)) { return true ; } return false ; } // Function to check if the graph represents a bus topology static void checkBusTopology(List<List< int >> adj, int V, int E) { bool isBus = checkBusTopologyUtil(adj, V, E); if (isBus) { Console.WriteLine( "YES" ); } else { Console.WriteLine( "NO" ); } } // Driver code static public void Main () { // Graph 1 int V = 5, E = 4; List<List< int >> adj1 = new List<List< int >>(); for ( int i = 0; i < V + 1; i++) { adj1.Add( new List< int >()); } addEdge(adj1, 1, 2); addEdge(adj1, 1, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); checkBusTopology(adj1, V, E); // Graph 2 V = 4; E = 4; List<List< int >> adj2 = new List<List< int >>(); for ( int i = 0; i < V + 1; i++) { adj2.Add( new List< int >()); } addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 2); checkBusTopology(adj2, V, E); } } // This code is contributed by avanitrachhadiya2155 |
Javascript
<script> // JavaScript program to check if the given graph // represents a bus topology // A utility function to add an edge in an // undirected graph. function addEdge(adj,u,v) { adj[u].push(v); adj[v].push(u); } // A utility function to print the adjacency list // representation of graph function printGraph(adj,V) { for (let v = 0; v < V; ++v) { document.write( "\n Adjacency list of vertex " + v + "\n head " ); for (let x=0;x<adj[v].length;x++) { document.write( "-> " + adj[v][x]); } document.write( "<br>" ); } } /* Function to return true if the graph represented by the adjacency list represents a bus topology else return false */ function checkBusTopologyUtil(adj,V,E) { // Number of edges should be equal // to (Number of vertices - 1) if (E != (V - 1)) { return false ; } // a single node is termed as a bus topology if (V == 1) { return true ; } let vertexDegree = new Array(V + 1); for (let i=0;i<vertexDegree.length;i++) { vertexDegree[i]=0; } // calculate the degree of each vertex for (let i = 1; i <= V; i++) { for (let v=0;v<adj[i].length;v++) { vertexDegree[adj[i][v]]++; } } // countDegree2 - number of vertices with degree 2 // countDegree1 - number of vertices with degree 1 let countDegree2 = 0, countDegree1 = 0; for (let i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } else if (vertexDegree[i] == 1) { countDegree1++; } else { // if any node has degree other // than 1 or 2, it is // NOT a bus topology return false ; } } // if both necessary conditions as discussed, // satisfy return true if (countDegree1 == 2 && countDegree2 == (V - 2)) { return true ; } return false ; } // Function to check if the graph represents a bus topology function checkBusTopology(adj,V,E) { let isBus = checkBusTopologyUtil(adj, V, E); if (isBus) { document.write( "YES<br>" ); } else { document.write( "NO<br>" ); } } // Driver code // Graph 1 let V = 5, E = 4; let adj1=[]; for (let i = 0; i < V + 1; i++) { adj1.push([]); } addEdge(adj1, 1, 2); addEdge(adj1, 1, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); checkBusTopology(adj1, V, E); // Graph 2 V = 4; E = 4; let adj2 = []; for (let i = 0; i < (V + 1); i++) { adj2.push([]); } addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 2); checkBusTopology(adj2, V, E); // This code is contributed by patel2127 </script> |
Output
YES NO
Complexity Analysis:
- Time Complexity : O(E), where E is the number of Edges in the graph.
- Auxiliary Space: O(1).
Please Login to comment...