Check if the end of the Array can be reached from a given position

Given an array arr[] of N positive integers and a number S, the task is to reach the end of the array from index S. We can only move from current index i to index (i + arr[i]) or (i – arr[i]). If there is a way to reach the end of the array then print “Yes” else print “No”.
Examples: 

Input: arr[] = {4, 1, 3, 2, 5}, S = 1 
Output: Yes 
Explanation: 
initial position: arr[S] = arr[1] = 1. 
Jumps to reach the end: 1 -> 4 -> 5 
Hence end has been reached. 

Input: arr[] = {2, 1, 4, 5}, S = 2 
Output: No 
Explanation: 
initial position: arr[S] = arr[2] = 2. 
Possible Jumps to reach the end: 4 -> (index 7) or 4 -> (index -2) 
Since both are out of bounds, Hence end can’t be reached. 

Approach: This problem can be solved using Breadth First Search. Below are the steps: 

  • Consider start index S as the source node and insert it into the queue.
  • While the queue is not empty do the following: 
    1. Pop the element from the top of the queue say temp.
    2. If temp is already visited or it is array out of bound index then, go to step 1.
    3. Else mark it as visited.
    4. Now if temp is the last index of the array, then print “Yes”.
    5. Else take two possible destinations from temp to (temp + arr[temp]), (temp – arr[temp]) and push it into the queue.
  • If the end of the array is not reached after the above steps then print “No”.

Below is the implementation of the above approach: 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to check if we can reach to
// the end of the arr[] with possible moves
void solve(int arr[], int n, int start)
{
  
    // Queue to perform BFS
    queue<int> q;
  
    // Initially all nodes(index)
    // are not visited.
    bool visited[n] = { false };
  
    // Initially the end of
    // the array is not reached
    bool reached = false;
  
    // Push start index in queue
    q.push(start);
  
    // Untill queue becomes empty
    while (!q.empty()) {
  
        // Get the top element
        int temp = q.front();
  
        // Delete popped element
        q.pop();
  
        // If the index is already
        // visited. No need to
        // traverse it again.
        if (visited[temp] == true)
            continue;
  
        // Mark temp as visited
        // if not
        visited[temp] = true;
        if (temp == n - 1) {
  
            // If reached at the end
            // of the array then break
            reached = true;
            break;
        }
  
        // If temp + arr[temp] and
        // temp - arr[temp] are in
        // the index of array
        if (temp + arr[temp] < n) {
            q.push(temp + arr[temp]);
        }
  
        if (temp - arr[temp] >= 0) {
            q.push(temp - arr[temp]);
        }
    }
  
    // If reaches the end of the array,
    // Print "Yes"
    if (reached == true) {
        cout << "Yes";
    }
  
    // Else print "No"
    else {
        cout << "No";
    }
}
  
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 4, 1, 3, 2, 5 };
  
    // Starting index
    int S = 1;
    int N = sizeof(arr) / sizeof(arr[0]);
  
    // Function Call
    solve(arr, N, S);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
  
class GFG{
  
// Function to check if we can reach to
// the end of the arr[] with possible moves
static void solve(int arr[], int n, int start)
{
  
    // Queue to perform BFS
    Queue<Integer> q = new LinkedList<>();
  
    // Initially all nodes(index)
    // are not visited.
    boolean []visited = new boolean[n];
  
    // Initially the end of
    // the array is not reached
    boolean reached = false;
  
    // Push start index in queue
    q.add(start);
  
    // Untill queue becomes empty
    while (!q.isEmpty()) 
    {
  
        // Get the top element
        int temp = q.peek();
  
        // Delete popped element
        q.remove();
  
        // If the index is already
        // visited. No need to
        // traverse it again.
        if (visited[temp] == true)
            continue;
  
        // Mark temp as visited
        // if not
        visited[temp] = true;
          
        if (temp == n - 1)
        {
  
            // If reached at the end
            // of the array then break
            reached = true;
            break;
        }
  
        // If temp + arr[temp] and
        // temp - arr[temp] are in
        // the index of array
        if (temp + arr[temp] < n)
        {
            q.add(temp + arr[temp]);
        }
  
        if (temp - arr[temp] >= 0)
        {
            q.add(temp - arr[temp]);
        }
    }
  
    // If reaches the end of the array,
    // Print "Yes"
    if (reached == true)
    {
        System.out.print("Yes");
    }
  
    // Else print "No"
    else 
    {
        System.out.print("No");
    }
}
  
// Driver Code
public static void main(String[] args)
{
      
    // Given array arr[]
    int arr[] = { 4, 1, 3, 2, 5 };
  
    // Starting index
    int S = 1;
    int N = arr.length;
  
    // Function call
    solve(arr, N, S);
}
}
  
// This code is contributed by gauravrajput1

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
from queue import Queue
   
# Function to check if we can reach to 
# the end of the arr[] with possible moves 
def solve(arr, n, start):
   
    # Queue to perform BFS
    q = Queue()
   
    # Initially all nodes(index) 
    # are not visited. 
    visited = [False] *
     
    # Initially the end of 
    # the array is not reached 
    reached = False
     
    # Push start index in queue 
    q.put(start); 
   
    # Untill queue becomes empty
    while (not q.empty()):
   
        # Get the top element
        temp = q.get()
   
        # If the index is already 
        # visited. No need to 
        # traverse it again. 
        if (visited[temp] == True):
            continue
   
        # Mark temp as visited, if not
        visited[temp] = True
        if (temp == n - 1):
   
            # If reached at the end
            # of the array then break
            reached = True
            break
   
        # If temp + arr[temp] and 
        # temp - arr[temp] are in 
        # the index of array 
        if (temp + arr[temp] < n):
            q.put(temp + arr[temp])
   
        if (temp - arr[temp] >= 0):
            q.put(temp - arr[temp])
   
    # If reaches the end of the array,
    # Print "Yes"
    if (reached == True):
        print("Yes")
   
    # Else print "No"
    else:
        print("No")
   
# Driver code
if __name__ == '__main__':
   
    # Given array arr[]
    arr = [ 4, 1, 3, 2, 5 ]
   
    # starting index
    S = 1
    N = len(arr)
   
    # Function call
    solve(arr, N, S)
   
# This code is contributed by himanshu77

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
using System.Collections.Generic;
  
class GFG{
  
// Function to check if we can reach to
// the end of the []arr with possible moves
static void solve(int []arr, int n, 
                  int start)
{
  
    // Queue to perform BFS
    Queue<int> q = new Queue<int>();
  
    // Initially all nodes(index)
    // are not visited.
    bool []visited = new bool[n];
  
    // Initially the end of
    // the array is not reached
    bool reached = false;
  
    // Push start index in queue
    q.Enqueue(start);
  
    // Untill queue becomes empty
    while (q.Count != 0) 
    {
  
        // Get the top element
        int temp = q.Peek();
  
        // Delete popped element
        q.Dequeue();
  
        // If the index is already
        // visited. No need to
        // traverse it again.
        if (visited[temp] == true)
            continue;
  
        // Mark temp as visited
        // if not
        visited[temp] = true;
          
        if (temp == n - 1)
        {
  
            // If reached at the end
            // of the array then break
            reached = true;
            break;
        }
  
        // If temp + arr[temp] and
        // temp - arr[temp] are in
        // the index of array
        if (temp + arr[temp] < n)
        {
            q.Enqueue(temp + arr[temp]);
        }
  
        if (temp - arr[temp] >= 0)
        {
            q.Enqueue(temp - arr[temp]);
        }
    }
  
    // If reaches the end of the array,
    // Print "Yes"
    if (reached == true)
    {
        Console.Write("Yes");
    }
  
    // Else print "No"
    else
    {
        Console.Write("No");
    }
}
  
// Driver Code
public static void Main(String[] args)
{
      
    // Given array []arr
    int []arr = { 4, 1, 3, 2, 5 };
  
    // Starting index
    int S = 1;
    int N = arr.Length;
  
    // Function call
    solve(arr, N, S);
}
}
  
// This code is contributed by gauravrajput1

chevron_right


Output: 

Yes

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : himanshu77, GauravRajput1