Related Articles
Check if the bracket sequence can be balanced with at most one change in the position of a bracket | Set 2
• Last Updated : 04 May, 2021

Given a bracket sequence as a string str, the task is to find whether the given string can be balanced by moving at most one bracket from its original place in the sequence to any other position.
Examples:

Input: str = “)(()”
Output: Yes
As by moving s to the end will make it valid.
“(())”
Input: str = “()))(()”
Output: No

Approach: The problem can be solved using a stack as discussed in this post. In this article, an approach that doesn’t use extra space will be discussed.
If the frequency of ‘(‘ is less than frequency of ‘)’. If the above difference is greater than 1 then the sequence cannot be balanced else it can be balanced if the overall difference is zero.
Below is implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function that returns true if``// the string can be balanced``bool` `canBeBalanced(string s, ``int` `n)``{` `    ``// Count to check the difference between``    ``// the frequencies of '(' and ')' and``    ``// count_1 is to find the minimum value``    ``// of freq('(') - freq(')')``    ``int` `count = 0, count_1 = 0;` `    ``// Traverse the given string``    ``for` `(``int` `i = 0; i < n; i++) {` `        ``// Increase the count``        ``if` `(s[i] == ``'('``)``            ``count++;` `        ``// Decrease the count``        ``else``            ``count--;` `        ``// Find the minimum value``        ``// of freq('(') - freq(')')``        ``count_1 = min(count_1, count);``    ``}` `    ``// If the minimum difference is greater``    ``// than or equal to -1 and the overall``    ``// difference is zero``    ``if` `(count_1 >= -1 && count == 0)``        ``return` `true``;` `    ``return` `false``;``}` `// Driver code``int` `main()``{``    ``string s = ``"())()("``;``    ``int` `n = s.length();` `    ``if` `(canBeBalanced(s, n))``        ``cout << ``"Yes"``;``    ``else``        ``cout << ``"No"``;` `    ``return` `0;``}`

## Java

 `// Java program to toggle K-th bit of a number N``class` `GFG``{` `// Function that returns true if``// the string can be balanced``static` `boolean` `canBeBalanced(String s, ``int` `n)``{` `    ``// Count to check the difference between``    ``// the frequencies of '(' and ')' and``    ``// count_1 is to find the minimum value``    ``// of freq('(') - freq(')')``    ``int` `count = ``0``, count_1 = ``0``;` `    ``// Traverse the given string``    ``for` `(``int` `i = ``0``; i < n; i++)``    ``{` `        ``// Increase the count``        ``if` `(s.charAt(i) == ``'('``)``            ``count++;` `        ``// Decrease the count``        ``else``            ``count--;` `        ``// Find the minimum value``        ``// of freq('(') - freq(')')``        ``count_1 = Math.min(count_1, count);``    ``}` `    ``// If the minimum difference is greater``    ``// than or equal to -1 and the overall``    ``// difference is zero``    ``if` `(count_1 >= -``1` `&& count == ``0``)``        ``return` `true``;` `    ``return` `false``;``}` `// Driver code``public` `static` `void` `main(String []args)``{``    ``String s = ``"())()("``;``    ``int` `n = s.length();` `    ``if` `(canBeBalanced(s, n))``        ``System.out.println(``"Yes"``);``    ``else``        ``System.out.println(``"No"``);``}``}` `// This code is contributed by PrinciRaj1992`

## Python3

 `# Python3 implementation of the approach` `# Function that returns true if``# the can be balanced``def` `canBeBalanced(s, n):` `    ``# Count to check the difference between``    ``# the frequencies of '(' and ')' and``    ``# count_1 is to find the minimum value``    ``# of freq('(') - freq(')')``    ``count ``=` `0``    ``count_1 ``=` `0` `    ``# Traverse the given string``    ``for` `i ``in` `range``(n):` `        ``# Increase the count``        ``if` `(s[i] ``=``=` `'('``):``            ``count ``+``=` `1` `        ``# Decrease the count``        ``else``:``            ``count ``-``=` `1` `        ``# Find the minimum value``        ``# of freq('(') - freq(')')``        ``count_1 ``=` `min``(count_1, count)` `    ``# If the minimum difference is greater``    ``# than or equal to -1 and the overall``    ``# difference is zero``    ``if` `(count_1 >``=` `-``1` `and` `count ``=``=` `0``):``        ``return` `True` `    ``return` `False` `# Driver code``s ``=` `"())()("``n ``=` `len``(s)` `if` `(canBeBalanced(s, n)):``    ``print``(``"Yes"``)``else``:``    ``print``(``"No"``)` `# This code is contributed by Mohit Kumar`

## C#

 `// C# program to toggle K-th bit of a number N``using` `System;` `class` `GFG``{` `// Function that returns true if``// the string can be balanced``static` `Boolean canBeBalanced(String s, ``int` `n)``{` `    ``// Count to check the difference between``    ``// the frequencies of '(' and ')' and``    ``// count_1 is to find the minimum value``    ``// of freq('(') - freq(')')``    ``int` `count = 0, count_1 = 0;` `    ``// Traverse the given string``    ``for` `(``int` `i = 0; i < n; i++)``    ``{` `        ``// Increase the count``        ``if` `(s[i] == ``'('``)``            ``count++;` `        ``// Decrease the count``        ``else``            ``count--;` `        ``// Find the minimum value``        ``// of freq('(') - freq(')')``        ``count_1 = Math.Min(count_1, count);``    ``}` `    ``// If the minimum difference is greater``    ``// than or equal to -1 and the overall``    ``// difference is zero``    ``if` `(count_1 >= -1 && count == 0)``        ``return` `true``;` `    ``return` `false``;``}` `// Driver code``public` `static` `void` `Main(String []args)``{``    ``String s = ``"())()("``;``    ``int` `n = s.Length;` `    ``if` `(canBeBalanced(s, n))``        ``Console.WriteLine(``"Yes"``);``    ``else``        ``Console.WriteLine(``"No"``);``}``}` `// This code is contributed by Rajput-Ji`

## Javascript

 ``
Output:
`Yes`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live and Geeks Classes Live USA

My Personal Notes arrow_drop_up