Check if sum Y can be obtained from the Array by the given operations

Given an array of integers arr[] and two integers X and Y, the task is to check if it is possible to obtain a sequence having sum X such that the sum of each element of the subsequence multiplied by an array element is equal to Y
Note: Here X is always less than Y.

Examples:

Input: arr[] = {1, 2, 7, 9, 10}, X = 11, Y = 13 
Output: Yes 
Explanation: 
The given value of X( = 11) can be split into a sequence {9, 2} such that 9 * 1(= arr[0] + 2 * 2(= arr[1]) = 13( = Y)

Input: arr[] ={1, 3, 5, 7}, X = 27, Y = 34 
Output: No

Approach: Follow the steps below in order to solve the problem: 



Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
#include <iostream>
using namespace std;
  
// Function to check if it is possible
// to obtain sum Y from a sequence of
// sum X from the array arr[]
void solve(int arr[], int n, int X, int Y)
{
  
    // Store the difference
    int diff = Y - X;
  
    // Iterate over the array
    for (int i = 0; i < n; i++) {
  
        if (arr[i] != 1) {
            diff = diff % (arr[i] - 1);
        }
    }
  
    // If diff reduced to 0
    if (diff == 0)
        cout << "Yes";
    else
        cout << "No";
}
  
// Driver Code
int main()
{
    int arr[] = { 1, 2, 7, 9, 10 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int X = 11, Y = 13;
    solve(arr, n, X, Y);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
class GFG{
      
// Function to check if it is possible
// to obtain sum Y from a sequence of
// sum X from the array arr[]
static void solve(int arr[], int n, 
                  int X, int Y)
{
      
    // Store the difference
    int diff = Y - X;
  
    // Iterate over the array
    for(int i = 0; i < n; i++)
    {
        if (arr[i] != 1
        {
            diff = diff % (arr[i] - 1);
        }
    }
  
    // If diff reduced to 0
    if (diff == 0)
        System.out.print( "Yes");
    else
        System.out.print("No");
}
  
// Driver Code
public static void main (String []args)
{
    int arr[] = { 1, 2, 7, 9, 10 };
    int n = arr.length;
    int X = 11, Y = 13;
      
    solve(arr, n, X, Y);
}
}
  
// This code is contributed by chitranayal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
  
# Function to check if it is possible
# to obtain sum Y from a sequence of
# sum X from the array arr[]
def solve(arr, n, X, Y):
  
    # Store the difference
    diff = Y - X
  
    # Iterate over the array
    for i in range(n):
        if(arr[i] != 1):
            diff = diff % (arr[i] - 1)
  
    # If diff reduced to 0
    if(diff == 0):
        print("Yes")
    else:
        print("No")
  
# Driver Code
arr = [ 1, 2, 7, 9, 10 ]
n = len(arr)
X, Y = 11, 13
  
# Function call
solve(arr, n, X, Y)
  
# This code is contributed by Shivam Singh
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
  
class GFG{
      
// Function to check if it is possible
// to obtain sum Y from a sequence of
// sum X from the array []arr
static void solve(int []arr, int n, 
                  int X, int Y)
{
      
    // Store the difference
    int diff = Y - X;
  
    // Iterate over the array
    for(int i = 0; i < n; i++)
    {
        if (arr[i] != 1) 
        {
            diff = diff % (arr[i] - 1);
        }
    }
  
    // If diff reduced to 0
    if (diff == 0)
        Console.Write("Yes");
    else
        Console.Write("No");
}
  
// Driver Code
public static void Main(String []args)
{
    int []arr = { 1, 2, 7, 9, 10 };
    int n = arr.Length;
    int X = 11, Y = 13;
      
    solve(arr, n, X, Y);
}
}
  
// This code is contributed by Amit Katiyar
chevron_right

Output: 
Yes

Time Complexity: O(N) 
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :