# Check if subarray with given product exists in an array

Given an array of both positive and negative integers and a number K. The task is to check if any subarray with product K is present in the array or not.

Examples:

```Input: arr[] = {-2, -1, 3, -4, 5}, K = 2
Output: YES

Input: arr[] = {3, -1, -1, -1, 5}, K = 3
Output: NO
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The approach is similar to used in Maximum Product Subarray , the only task is to simultaneously check that the product is equal to k or not.

Below is the implementation of above approach:

## C++

 `// CPP program to check if there is ` `// any Subarray with product equal to K ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find maximum product subarray ` `bool` `maxProduct(``int``* arr, ``int` `n, ``int` `p) ` `{ ` `    ``// Variables to store maximum and minimum ` `    ``// product till ith index. ` `    ``int` `minVal = arr; ` `    ``int` `maxVal = arr; ` ` `  `    ``int` `maxProduct = arr; ` ` `  `    ``for` `(``int` `i = 1; i < n; i++) { ` ` `  `        ``// When multiplied by -ve number, ` `        ``// maxVal becomes minVal ` `        ``// and minVal becomes maxVal. ` `        ``if` `(arr[i] < 0) ` `            ``swap(maxVal, minVal); ` ` `  `        ``// maxVal and minVal stores the ` `        ``// product of subarray ending at arr[i]. ` `        ``maxVal = max(arr[i], maxVal * arr[i]); ` `        ``minVal = min(arr[i], minVal * arr[i]); ` ` `  `        ``// Check if the current product is ` `        ``// equal to the given product ` `        ``if` `(minVal == p || maxVal == p) { ` `            ``return` `true``; ` `        ``} ` ` `  `        ``// Max Product of array. ` `        ``maxProduct = max(maxProduct, maxVal); ` `    ``} ` ` `  `    ``// Return maximum product found in array. ` `    ``return` `false``; ` `} ` ` `  `// Driver Program to test above function ` `int` `main() ` `{ ` `    ``int` `arr[] = { 1, 2, -5, -4 }; ` `    ``int` `product = -10; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` ` `  `    ``if` `(maxProduct(arr, n, product)) { ` `        ``cout << ``"YES"` `<< endl; ` `    ``} ` `    ``else` `        ``cout << ``"NO"` `<< endl; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to check if there  ` `// is any Subarray with product  ` `// equal to K ` `import` `java.io.*; ` ` `  `class` `GFG  ` `{ ` `     `  `// Function to find maximum ` `// product subarray ` `static` `boolean` `maxProduct(``int` `arr[],  ` `                          ``int` `n, ``int` `p) ` `{ ` `    ``// Variables to store maximum  ` `    ``// and minimum product till  ` `    ``// ith index. ` `    ``int` `minVal = arr[``0``]; ` `    ``int` `maxVal = arr[``0``]; ` ` `  `    ``int` `maxProduct = arr[``0``]; ` ` `  `    ``for` `(``int` `i = ``1``; i < n; i++)  ` `    ``{ ` ` `  `        ``// When multiplied by -ve number, ` `        ``// maxVal becomes minVal ` `        ``// and minVal becomes maxVal. ` `        ``if` `(arr[i] < ``0``) ` `        ``{ ` `            ``int` `temp = maxVal; ` `            ``maxVal = minVal; ` `            ``minVal = temp; ` `        ``} ` `         `  `        ``// maxVal and minVal stores  ` `        ``// the product of subarray  ` `        ``// ending at arr[i]. ` `        ``maxVal = Math.max(arr[i], ` `                      ``maxVal * arr[i]); ` `        ``minVal = Math.min(arr[i],  ` `                      ``minVal * arr[i]); ` ` `  `        ``// Check if the current product  ` `        ``// is equal to the given product ` `        ``if` `(minVal == p || maxVal == p) ` `        ``{ ` `            ``return` `true``; ` `        ``} ` ` `  `        ``// Max Product of array. ` `        ``maxProduct = Math.max(maxProduct,  ` `                              ``maxVal); ` `    ``} ` ` `  `    ``// Return maximum product ` `    ``// found in array. ` `    ``return` `false``; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main (String[] args)  ` `{ ` `    ``int` `[]arr = { ``1``, ``2``, -``5``, -``4` `}; ` `    ``int` `product = -``10``; ` `    ``int` `n = arr.length; ` `     `  `    ``if` `(maxProduct(arr, n, product))  ` `    ``{ ` `        ``System.out.println( ``"YES"``); ` `    ``} ` `    ``else` `        ``System.out.println( ``"NO"``); ` `} ` `} ` ` `  `// This code is contributed  ` `// by inder_verma `

## Python 3

 `# Python 3 program to check if there is ` `# any Subarray with product equal to K ` ` `  `# Function to find maximum ` `# product subarray ` `def` `maxProduct(arr,n, p): ` ` `  `    ``# Variables to store maximum and  ` `    ``# minimum product till ith index. ` `    ``minVal ``=` `arr[``0``] ` `    ``maxVal ``=` `arr[``0``] ` ` `  `    ``maxProduct ``=` `arr[``0``] ` ` `  `    ``for` `i ``in` `range``( ``1``, n): ` ` `  `        ``# When multiplied by -ve number, ` `        ``# maxVal becomes minVal ` `        ``# and minVal becomes maxVal. ` `        ``if` `(arr[i] < ``0``): ` `            ``maxVal, minVal ``=` `minVal, maxVal ` ` `  `        ``# maxVal and minVal stores the ` `        ``# product of subarray ending at arr[i]. ` `        ``maxVal ``=` `max``(arr[i], maxVal ``*` `arr[i]) ` `        ``minVal ``=` `min``(arr[i], minVal ``*` `arr[i]) ` ` `  `        ``# Check if the current product is ` `        ``# equal to the given product ` `        ``if` `(minVal ``=``=` `p ``or` `maxVal ``=``=` `p): ` `            ``return` `True` ` `  `        ``# Max Product of array. ` `        ``maxProduct ``=` `max``(maxProduct, maxVal) ` ` `  `    ``# Return maximum product  ` `    ``# found in array. ` `    ``return` `False` ` `  `# Driver Code ` `if` `__name__ ``=``=` `"__main__"``: ` `     `  `    ``arr ``=` `[ ``1``, ``2``, ``-``5``, ``-``4` `] ` `    ``product ``=` `-``10` `    ``n ``=` `len``(arr) ` ` `  `    ``if` `(maxProduct(arr, n, product)): ` `        ``print``(``"YES"``) ` `    ``else``: ` `        ``print``(``"NO"``) ` ` `  `# This code is contributed  ` `# by ChitraNayal `

## C#

 `// C# program to check if there  ` `// is any Subarray with product  ` `// equal to K ` `using` `System; ` ` `  `class` `GFG  ` `{ ` `     `  `// Function to find maximum ` `// product subarray ` `static` `bool` `maxProduct(``int` `[]arr,  ` `                       ``int` `n, ``int` `p) ` `{ ` `    ``// Variables to store maximum  ` `    ``// and minimum product till  ` `    ``// ith index. ` `    ``int` `minVal = arr; ` `    ``int` `maxVal = arr; ` ` `  `    ``int` `maxProduct = arr; ` ` `  `    ``for` `(``int` `i = 1; i < n; i++)  ` `    ``{ ` ` `  `        ``// When multiplied by -ve number, ` `        ``// maxVal becomes minVal ` `        ``// and minVal becomes maxVal. ` `        ``if` `(arr[i] < 0) ` `        ``{ ` `            ``int` `temp = maxVal; ` `            ``maxVal = minVal; ` `            ``minVal = temp; ` `        ``} ` `         `  `        ``// maxVal and minVal stores  ` `        ``// the product of subarray  ` `        ``// ending at arr[i]. ` `        ``maxVal = Math.Max(arr[i], ` `                    ``maxVal * arr[i]); ` `        ``minVal = Math.Min(arr[i],  ` `                    ``minVal * arr[i]); ` ` `  `        ``// Check if the current product  ` `        ``// is equal to the given product ` `        ``if` `(minVal == p || maxVal == p) ` `        ``{ ` `            ``return` `true``; ` `        ``} ` ` `  `        ``// Max Product of array. ` `        ``maxProduct = Math.Max(maxProduct,  ` `                              ``maxVal); ` `    ``} ` ` `  `    ``// Return maximum product ` `    ``// found in array. ` `    ``return` `false``; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `Main ()  ` `{ ` `    ``int` `[]arr = { 1, 2, -5, -4 }; ` `    ``int` `product = -10; ` `    ``int` `n = arr.Length; ` `     `  `    ``if` `(maxProduct(arr, n, product))  ` `    ``{ ` `        ``Console.WriteLine( ``"YES"``); ` `    ``} ` `    ``else` `        ``Console.WriteLine( ``"NO"``); ` `} ` `} ` ` `  `// This code is contributed  ` `// by inder_verma `

## PHP

 ` `

Output:

```YES
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.