Check if subarray with given product exists in an array

Given an array of both positive and negative integers and a number K. The task is to check if any subarray with product K is present in the array or not.

Examples:

Input: arr[] = {-2, -1, 3, -4, 5}, K = 2
Output: YES

Input: arr[] = {3, -1, -1, -1, 5}, K = 3
Output: NO

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The approach is similar to used in Maximum Product Subarray , the only task is to simultaneously check that the product is equal to k or not.

Below is the implementation of above approach:

C++

 // CPP program to check if there is // any Subarray with product equal to K #include using namespace std;    // Function to find maximum product subarray bool maxProduct(int* arr, int n, int p) {     // Variables to store maximum and minimum     // product till ith index.     int minVal = arr;     int maxVal = arr;        int maxProduct = arr;        for (int i = 1; i < n; i++) {            // When multiplied by -ve number,         // maxVal becomes minVal         // and minVal becomes maxVal.         if (arr[i] < 0)             swap(maxVal, minVal);            // maxVal and minVal stores the         // product of subarray ending at arr[i].         maxVal = max(arr[i], maxVal * arr[i]);         minVal = min(arr[i], minVal * arr[i]);            // Check if the current product is         // equal to the given product         if (minVal == p || maxVal == p) {             return true;         }            // Max Product of array.         maxProduct = max(maxProduct, maxVal);     }        // Return maximum product found in array.     return false; }    // Driver Program to test above function int main() {     int arr[] = { 1, 2, -5, -4 };     int product = -10;     int n = sizeof(arr) / sizeof(arr);        if (maxProduct(arr, n, product)) {         cout << "YES" << endl;     }     else         cout << "NO" << endl;        return 0; }

Java

 // Java program to check if there  // is any Subarray with product  // equal to K import java.io.*;    class GFG  {        // Function to find maximum // product subarray static boolean maxProduct(int arr[],                            int n, int p) {     // Variables to store maximum      // and minimum product till      // ith index.     int minVal = arr;     int maxVal = arr;        int maxProduct = arr;        for (int i = 1; i < n; i++)      {            // When multiplied by -ve number,         // maxVal becomes minVal         // and minVal becomes maxVal.         if (arr[i] < 0)         {             int temp = maxVal;             maxVal = minVal;             minVal = temp;         }                    // maxVal and minVal stores          // the product of subarray          // ending at arr[i].         maxVal = Math.max(arr[i],                       maxVal * arr[i]);         minVal = Math.min(arr[i],                        minVal * arr[i]);            // Check if the current product          // is equal to the given product         if (minVal == p || maxVal == p)         {             return true;         }            // Max Product of array.         maxProduct = Math.max(maxProduct,                                maxVal);     }        // Return maximum product     // found in array.     return false; }    // Driver Code public static void main (String[] args)  {     int []arr = { 1, 2, -5, -4 };     int product = -10;     int n = arr.length;            if (maxProduct(arr, n, product))      {         System.out.println( "YES");     }     else         System.out.println( "NO"); } }    // This code is contributed  // by inder_verma

Python 3

 # Python 3 program to check if there is # any Subarray with product equal to K    # Function to find maximum # product subarray def maxProduct(arr,n, p):        # Variables to store maximum and      # minimum product till ith index.     minVal = arr     maxVal = arr        maxProduct = arr        for i in range( 1, n):            # When multiplied by -ve number,         # maxVal becomes minVal         # and minVal becomes maxVal.         if (arr[i] < 0):             maxVal, minVal = minVal, maxVal            # maxVal and minVal stores the         # product of subarray ending at arr[i].         maxVal = max(arr[i], maxVal * arr[i])         minVal = min(arr[i], minVal * arr[i])            # Check if the current product is         # equal to the given product         if (minVal == p or maxVal == p):             return True            # Max Product of array.         maxProduct = max(maxProduct, maxVal)        # Return maximum product      # found in array.     return False    # Driver Code if __name__ == "__main__":            arr = [ 1, 2, -5, -4 ]     product = -10     n = len(arr)        if (maxProduct(arr, n, product)):         print("YES")     else:         print("NO")    # This code is contributed  # by ChitraNayal

C#

 // C# program to check if there  // is any Subarray with product  // equal to K using System;    class GFG  {        // Function to find maximum // product subarray static bool maxProduct(int []arr,                         int n, int p) {     // Variables to store maximum      // and minimum product till      // ith index.     int minVal = arr;     int maxVal = arr;        int maxProduct = arr;        for (int i = 1; i < n; i++)      {            // When multiplied by -ve number,         // maxVal becomes minVal         // and minVal becomes maxVal.         if (arr[i] < 0)         {             int temp = maxVal;             maxVal = minVal;             minVal = temp;         }                    // maxVal and minVal stores          // the product of subarray          // ending at arr[i].         maxVal = Math.Max(arr[i],                     maxVal * arr[i]);         minVal = Math.Min(arr[i],                      minVal * arr[i]);            // Check if the current product          // is equal to the given product         if (minVal == p || maxVal == p)         {             return true;         }            // Max Product of array.         maxProduct = Math.Max(maxProduct,                                maxVal);     }        // Return maximum product     // found in array.     return false; }    // Driver Code public static void Main ()  {     int []arr = { 1, 2, -5, -4 };     int product = -10;     int n = arr.Length;            if (maxProduct(arr, n, product))      {         Console.WriteLine( "YES");     }     else         Console.WriteLine( "NO"); } }    // This code is contributed  // by inder_verma

PHP



Output:

YES

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.