Related Articles

Related Articles

Check if rows of a Matrix can be rearranged to make Bitwise XOR of first column non-zero
  • Last Updated : 24 Nov, 2020

Given a matrix mat[][] of size N * M, the task is to check if it is possible to rearrange the row elements of the matrix such that Bitwise XOR of the first column element is non-zero. If it is possible then print “Yes” else print “No”.

Examples:

Input: mat[][] = {{1, 1, 2}, {2, 2, 2}, {3, 3, 3}}
Output: Yes
Explanation:
After rearranging the first row as 2, 1, 1.
Bitwise XOR of the first column will be 3 i.e., (2 ^ 2 ^ 3).

Input: mat[][] = {{1, 1, 1}, {2, 2, 2}, {3, 3, 3}}
Output: No
Explanation:
As all the rearrangements give same first element so the only combination is (1 ^ 2 ^ 3) which equals zero.
Therefore, it is not possible to obtain non-zero Bitwise XOR of the first column.

Approach: Follow the steps below to solve the problem:



  • Find the Bitwise XOR of the elements of the first column of the matrix and store it in a variable res.
  • If res is non-zero then print “Yes”.
  • Else, iterate over all the rows and find the element in a row which is not equal to the element at the first index of this row.
  • If no such element is present in any row in the above step then print “No” else then print “Yes”.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if there is any
// row where number of unique elements
// are greater than 1
string checkRearrangements(
    vector<vector<int> > mat, int N, int M)
{
    // Iterate over the matrix
    for (int i = 0; i < N; i++) {
 
        for (int j = 1; j < M; j++) {
 
            if (mat[i][0] != mat[i][j]) {
 
                return "Yes";
            }
        }
    }
    return "No";
}
 
// Function to check if it is possible
// to rearrange mat[][] such that XOR
// of its first column is non-zero
string nonZeroXor(vector<vector<int> > mat,
                  int N, int M)
{
    int res = 0;
 
    // Find bitwise XOR of the first
    // column of mat[][]
    for (int i = 0; i < N; i++) {
 
        res = res ^ mat[i][0];
    }
 
    // If bitwise XOR of the first
    // column of mat[][] is non-zero
    if (res != 0)
        return "Yes";
 
    // Otherwise check rearrangements
    else
        return checkRearrangements(mat, N, M);
}
 
// Driver Code
int main()
{
    // Given Matrix mat[][]
    vector<vector<int> > mat
        = { { 1, 1, 2 },
            { 2, 2, 2 },
            { 3, 3, 3 } };
 
    int N = mat.size();
    int M = mat[0].size();
 
    // Function Call
    cout << nonZeroXor(mat, N, M);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the
// above approach
import java.util.*;
class GFG{
 
// Function to check if there is any
// row where number of unique elements
// are greater than 1
static String checkRearrangements(int[][] mat,
                                  int N, int M)
{
  // Iterate over the matrix
  for (int i = 0; i < N; i++)
  {
    for (int j = 1; j < M; j++)
    {
      if (mat[i][0] != mat[i][j])
      {
        return "Yes";
      }
    }
  }
  return "No";
}
 
// Function to check if it is possible
// to rearrange mat[][] such that XOR
// of its first column is non-zero
static String nonZeroXor(int[][] mat,
                         int N, int M)
{
  int res = 0;
 
  // Find bitwise XOR of the
  // first column of mat[][]
  for (int i = 0; i < N; i++)
  {
    res = res ^ mat[i][0];
  }
 
  // If bitwise XOR of the first
  // column of mat[][] is non-zero
  if (res != 0)
    return "Yes";
 
  // Otherwise check
  // rearrangements
  else
    return checkRearrangements(mat,
                               N, M);
}
 
// Driver Code
public static void main(String[] args)
{
  // Given Matrix mat[][]
  int[][] mat = {{1, 1, 2},
                 {2, 2, 2},
                 {3, 3, 3}};
 
  int N = mat.length;
  int M = mat[0].length;
 
  // Function Call
  System.out.print(nonZeroXor(mat,
                              N, M));
}
}
 
// This code is contributed by gauravrajput1

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to check if there is any
# row where number of unique elements
# are greater than 1
def checkRearrangements(mat, N, M):
     
    # Iterate over the matrix
    for i in range(N):
        for j in range(1, M):
            if (mat[i][0] != mat[i][j]):
                return "Yes"
                 
    return "No"
 
# Function to check if it is possible
# to rearrange mat[][] such that XOR
# of its first column is non-zero
def nonZeroXor(mat, N, M):
 
    res = 0
 
    # Find bitwise XOR of the first
    # column of mat[][]
    for i in range(N):
        res = res ^ mat[i][0]
 
    # If bitwise XOR of the first
    # column of mat[][] is non-zero
    if (res != 0):
        return "Yes"
 
    # Otherwise check rearrangements
    else:
        return checkRearrangements(mat, N, M)
 
# Driver Code
if __name__ == "__main__":
 
    # Given Matrix mat[][]
    mat = [ [ 1, 1, 2 ],
            [ 2, 2, 2 ],
            [ 3, 3, 3 ] ]
 
    N = len(mat)
    M = len(mat[0])
 
    # Function Call
    print(nonZeroXor(mat, N, M))
 
# This code is contributed by chitranayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the
// above approach
using System;
 
class GFG{
 
// Function to check if there is any
// row where number of unique elements
// are greater than 1
static String checkRearrangements(int[,] mat,
                                  int N, int M)
{
   
  // Iterate over the matrix
  for(int i = 0; i < N; i++)
  {
    for(int j = 1; j < M; j++)
    {
      if (mat[i, 0] != mat[i, j])
      {
        return "Yes";
      }
    }
  }
  return "No";
}
 
// Function to check if it is possible
// to rearrange [,]mat such that XOR
// of its first column is non-zero
static String nonZeroXor(int[,] mat,
                         int N, int M)
{
  int res = 0;
 
  // Find bitwise XOR of the
  // first column of [,]mat
  for(int i = 0; i < N; i++)
  {
    res = res ^ mat[i, 0];
  }
 
  // If bitwise XOR of the first
  // column of [,]mat is non-zero
  if (res != 0)
    return "Yes";
 
  // Otherwise check
  // rearrangements
  else
    return checkRearrangements(mat,
                               N, M);
}
 
// Driver Code
public static void Main(String[] args)
{
   
  // Given Matrix [,]mat
  int[,] mat = { { 1, 1, 2 },
                 { 2, 2, 2 },
                 { 3, 3, 3 } };
 
  int N = mat.GetLength(0);
  int M = mat.GetLength(1);
 
  // Function Call
  Console.Write(nonZeroXor(mat,
                           N, M));
}
}
 
// This code is contributed by Amit Katiyar

chevron_right


Output: 

Yes









 

Time Complexity: O(N * M)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :