Check if row-major order path of Matrix is palindrome or not

Given a matrix mat[][], the task is to check if the row-major order path of the matrix is a palindrome or not.

Examples:

Input: mat[][] = {{1, 2, 3}, {4, 5, 4}, {3, 2, 1}}
Output: YES
Explanation:
Row-major order traversal of matrix is –
1 => 2 => 3 => 4 => 5 => 4 => 3 => 2 => 1
Reverse row-major order traversal of matrix is –
1 => 2 => 3 => 4 => 5 => 4 => 3 => 2 => 1
Since, the reverse and forward traversal of matrix is same.
Therefore, it is a palindrome.

Input: mat[][] = {{1, 2}, {2, 3}}
Output: NO

Approach: The idea is to traverse the half matrix and check its opposite half elements are the same or not at the same time. That is for the index of i and j, check that N - i - 1 and M - i - 1. If for any index there is a mismatch, print NO.



Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to check if
// row-major order traversal of
// matrix is palindrome or not
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to check if row-major order
// traversal of the matrix is is palindrome
bool isPal(int a[3][3], int n, int m)
{
    // Loop to check if the matrix is
    // matrix is palindrome or not
    for (int i = 0; i < n / 2; i++) {
        for (int j = 0; j < m - 1; j++) {
            if (a[i][j] != a[n - 1 - i][m - 1 - j])
                return false;
        }
    }
    return true;
}
  
// Driver Code
int main()
{
    int n = 3, m = 3;
    int a[3][3] = { { 1, 2, 3 },
                    { 4, 5, 4 },
                    { 3, 2, 1 } };
    if (isPal(a, n, m)) {
        cout << "YES" << endl;
    }
    else {
        cout << "NO" << endl;
    }
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to check if
// row-major order traversal of
// matrix is palindrome or not
import java.util.*;
  
class GFG{
  
// Function to check if row-major order
// traversal of the matrix is is palindrome
static boolean isPal(int a[][], int n, int m)
{
      
    // Loop to check if the matrix is
    // matrix is palindrome or not
    for(int i = 0; i < n / 2; i++)
    {
       for(int j = 0; j < m - 1; j++)
       {
          if (a[i][j] != a[n - 1 - i][m - 1 - j])
              return false;
       }
    }
    return true;
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 3, m = 3;
    int a[][] = { { 1, 2, 3 },
                  { 4, 5, 4 },
                  { 3, 2, 1 } };
                    
    if (isPal(a, n, m))
    {
        System.out.print("YES" + "\n");
    }
    else
    {
        System.out.print("NO" + "\n");
    }
}
}
  
// This code is contributed by gauravrajput1

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to check if
# row-major order traversal of
# matrix is palindrome or not
  
# Function to check if row-major order
# traversal of the matrix is is palindrome
def isPal(a, n, m):
      
    # Loop to check if the matrix is
    # matrix is palindrome or not
    for i in range(0, n // 2):
        for j in range(0, m - 1):
            if (a[i][j] != a[n - 1 - i][m - 1 - j]):
                return False;
  
    return True;
  
# Driver Code
if __name__ == '__main__':
    n = 3;
    m = 3;
    a = [[1, 2, 3], [4, 5, 4], [3, 2, 1]];
  
    if (isPal(a, n, m)):
        print("YES");
    else:
        print("NO");
  
# This code is contributed by Princi Singh

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to check if
// row-major order traversal of
// matrix is palindrome or not
using System;
  
class GFG{
  
// Function to check if row-major order
// traversal of the matrix is is palindrome
static bool isPal(int[,]a, int n, int m)
{
      
    // Loop to check if the matrix is
    // matrix is palindrome or not
    for(int i = 0; i < n / 2; i++)
    {
       for(int j = 0; j < m - 1; j++)
       {
           if (a[i, j] != a[n - 1 - i, 
                            m - 1 - j])
               return false;
       }
    }
    return true;
}
  
// Driver Code
public static void Main(String[] args)
{
    int n = 3, m = 3;
    int[,]a = { { 1, 2, 3 },
                { 4, 5, 4 },
                { 3, 2, 1 } };
                      
    if (isPal(a, n, m))
    {
        Console.Write("YES" + "\n");
    }
    else
    {
        Console.Write("NO" + "\n");
    }
}
}
  
// This code is contributed by gauravrajput1

chevron_right


Output:

YES

competitive-programming-img




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.