# Check if product of digits of a number at even and odd places is equal

Given an integer N, the task is to check whether the product of digits at even and odd places of a number are equal. If they are equal, print Yes otherwise print No.

Examples:

Input: N = 2841
Output: Yes
Product of digits at odd places = 2 * 4 = 8
Product of digits at even places = 8 * 1 = 8

Input: N = 4324
Output: No
Product of digits at odd places = 4 * 2 = 8
Product of digits at even places = 3 * 4 = 12

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

• Find product of digits at even places and store it in prodEven.
• Find product of digits at odd places and store it in prodOdd.
• If prodEven = prodOdd then print Yes otherwise print No.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function that returns true if the product ` `// of even positioned digits is equal to ` `// the product of odd positioned digits in n ` `bool` `productEqual(``int` `n) ` `{ ` ` `  `    ``// If n is a single digit number ` `    ``if` `(n < 10) ` `        ``return` `false``; ` `    ``int` `prodOdd = 1, prodEven = 1; ` ` `  `    ``while` `(n > 0) { ` ` `  `        ``// Take two consecutive digits ` `        ``// at a time ` `        ``// First digit ` `        ``int` `digit = n % 10; ` `        ``prodOdd *= digit; ` `        ``n /= 10; ` ` `  `        ``// If n becomes 0 then ` `        ``// there's no more digit ` `        ``if` `(n == 0) ` `            ``break``; ` ` `  `        ``// Second digit ` `        ``digit = n % 10; ` `        ``prodEven *= digit; ` `        ``n /= 10; ` `    ``} ` ` `  `    ``// If the products are equal ` `    ``if` `(prodEven == prodOdd) ` `        ``return` `true``; ` ` `  `    ``// If products are not equal ` `    ``return` `false``; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 4324; ` ` `  `    ``if` `(productEqual(n)) ` `        ``cout << ``"Yes"``; ` `    ``else` `        ``cout << ``"No"``; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach  ` ` `  `class` `GFG  ` `{  ` `     `  `    ``// Function that returns true  ` `    ``// if the product of even positioned  ` `    ``// digits is equal to the product of  ` `    ``// odd positioned digits in n  ` `    ``static` `boolean` `productEqual(``int` `n)  ` `    ``{  ` `     `  `        ``// If n is a single digit number  ` `        ``if` `(n < ``10``)  ` `            ``return` `false``;  ` `        ``int` `prodOdd = ``1``, prodEven = ``1``;  ` `     `  `        ``while` `(n > ``0``)  ` `        ``{  ` `     `  `            ``// Take two consecutive digits  ` `            ``// at a time  ` `            ``// First digit  ` `            ``int` `digit = n % ``10``;  ` `            ``prodOdd *= digit;  ` `            ``n /= ``10``;  ` `     `  `            ``// If n becomes 0 then  ` `            ``// there's no more digit  ` `            ``if` `(n == ``0``)  ` `                ``break``;  ` `     `  `            ``// Second digit  ` `            ``digit = n % ``10``;  ` `            ``prodEven *= digit;  ` `            ``n /= ``10``;  ` `        ``}  ` `     `  `        ``// If the products are equal  ` `        ``if` `(prodEven == prodOdd)  ` `            ``return` `true``;  ` `     `  `        ``// If products are not equal  ` `        ``return` `false``;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main(String args[])  ` `    ``{  ` `        ``int` `n = ``4324``;  ` `     `  `        ``if` `(productEqual(n))  ` `            ``System.out.println(``"Yes"``);  ` `        ``else` `            ``System.out.println(``"No"``);  ` `    ``}  ` `    ``// This code is contributed by Ryuga ` `}  `

## Python3

 `# Python implementation of the approach ` ` `  `# Function that returns true if the product ` `# of even positioned digits is equal to ` `# the product of odd positioned digits in n ` `def` `productEqual(n): ` `    ``if` `n < ``10``: ` `        ``return` `False` `    ``prodOdd ``=` `1``; prodEven ``=` `1` ` `  `    ``# Take two consecutive digits ` `    ``# at a time ` `    ``# First digit ` `    ``while` `n > ``0``: ` `        ``digit ``=` `n ``%` `10` `        ``prodOdd ``*``=` `digit ` `        ``n ``=` `n``/``/``10` ` `  `        ``# If n becomes 0 then ` `        ``# there's no more digit ` `        ``if` `n ``=``=` `0``: ` `            ``break``; ` `        ``digit ``=` `n ``%` `10` `        ``prodEven ``*``=` `digit ` `        ``n ``=` `n``/``/``10` ` `  `    ``# If the products are equal ` `    ``if` `prodOdd ``=``=` `prodEven: ` `        ``return` `True` ` `  `    ``# If the products are not equal ` `    ``return` `False` ` `  `# Driver code ` `n ``=` `4324` `if` `productEqual(n): ` `    ``print``(``"Yes"``) ` `else``: ` `    ``print``(``"No"``) ` ` `  `# This code is contributed by Shrikant13 `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `// Function that returns true  ` `// if the product of even positioned ` `// digits is equal to the product of ` `// odd positioned digits in n ` `static` `bool` `productEqual(``int` `n) ` `{ ` ` `  `    ``// If n is a single digit number ` `    ``if` `(n < 10) ` `        ``return` `false``; ` `    ``int` `prodOdd = 1, prodEven = 1; ` ` `  `    ``while` `(n > 0) ` `    ``{ ` ` `  `        ``// Take two consecutive digits ` `        ``// at a time ` `        ``// First digit ` `        ``int` `digit = n % 10; ` `        ``prodOdd *= digit; ` `        ``n /= 10; ` ` `  `        ``// If n becomes 0 then ` `        ``// there's no more digit ` `        ``if` `(n == 0) ` `            ``break``; ` ` `  `        ``// Second digit ` `        ``digit = n % 10; ` `        ``prodEven *= digit; ` `        ``n /= 10; ` `    ``} ` ` `  `    ``// If the products are equal ` `    ``if` `(prodEven == prodOdd) ` `        ``return` `true``; ` ` `  `    ``// If products are not equal ` `    ``return` `false``; ` `} ` ` `  `// Driver code ` `static` `void` `Main() ` `{ ` `    ``int` `n = 4324; ` ` `  `    ``if` `(productEqual(n)) ` `        ``Console.WriteLine(``"Yes"``); ` `    ``else` `        ``Console.WriteLine(``"No"``); ` `} ` `} ` ` `  `// This code is contributed by mits `

## PHP

 ` 0) ` `    ``{ ` ` `  `        ``// Take two consecutive digits ` `        ``// at a time ` `         `  `        ``// First digit ` `        ``\$digit` `= ``\$n` `% 10; ` `        ``\$prodOdd` `*= ``\$digit``; ` `        ``\$n` `/= 10; ` ` `  `        ``// If n becomes 0 then ` `        ``// there's no more digit ` `        ``if` `(``\$n` `== 0) ` `            ``break``; ` ` `  `        ``// Second digit ` `        ``\$digit` `= ``\$n` `% 10; ` `        ``\$prodEven` `*= ``\$digit``; ` `        ``\$n` `/= 10; ` `    ``} ` ` `  `    ``// If the products are equal ` `    ``if` `(``\$prodEven` `== ``\$prodOdd``) ` `        ``return` `true; ` ` `  `    ``// If products are not equal ` `    ``return` `false; ` `} ` ` `  `// Driver code ` `\$n` `= 4324; ` `if` `(productEqual(!``\$n``)) ` `    ``echo` `"Yes"``; ` `else` `    ``echo` `"No"``; ` ` `  `// This code is contributed by jit_t ` `?> `

Output:

```No
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.