Skip to content
Related Articles

Related Articles

Check if product of digits of a number at even and odd places is equal
  • Last Updated : 12 May, 2021

Given an integer N, the task is to check whether the product of digits at even and odd places of a number are equal. If they are equal, print Yes otherwise print No.

Examples: 

Input: N = 2841 
Output: Yes 
Product of digits at odd places = 2 * 4 = 8 
Product of digits at even places = 8 * 1 = 8

Input: N = 4324 
Output: No 
Product of digits at odd places = 4 * 2 = 8 
Product of digits at even places = 3 * 4 = 12   

Approach:  



  • Find the product of digits at even places and store it in prodEven.
  • Find the product of digits at odd places and store it in prodOdd.
  • If prodEven = prodOdd then print Yes otherwise print No.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if the product
// of even positioned digits is equal to
// the product of odd positioned digits in n
bool productEqual(int n)
{
 
    // If n is a single digit number
    if (n < 10)
        return false;
    int prodOdd = 1, prodEven = 1;
 
    while (n > 0) {
 
        // Take two consecutive digits
        // at a time
        // First digit
        int digit = n % 10;
        prodOdd *= digit;
        n /= 10;
 
        // If n becomes 0 then
        // there's no more digit
        if (n == 0)
            break;
 
        // Second digit
        digit = n % 10;
        prodEven *= digit;
        n /= 10;
    }
 
    // If the products are equal
    if (prodEven == prodOdd)
        return true;
 
    // If products are not equal
    return false;
}
 
// Driver code
int main()
{
    int n = 4324;
 
    if (productEqual(n))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java




// Java implementation of the approach
 
class GFG
{
     
    // Function that returns true
    // if the product of even positioned
    // digits is equal to the product of
    // odd positioned digits in n
    static boolean productEqual(int n)
    {
     
        // If n is a single digit number
        if (n < 10)
            return false;
        int prodOdd = 1, prodEven = 1;
     
        while (n > 0)
        {
     
            // Take two consecutive digits
            // at a time
            // First digit
            int digit = n % 10;
            prodOdd *= digit;
            n /= 10;
     
            // If n becomes 0 then
            // there's no more digit
            if (n == 0)
                break;
     
            // Second digit
            digit = n % 10;
            prodEven *= digit;
            n /= 10;
        }
     
        // If the products are equal
        if (prodEven == prodOdd)
            return true;
     
        // If products are not equal
        return false;
    }
     
    // Driver code
    public static void main(String args[])
    {
        int n = 4324;
     
        if (productEqual(n))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
    // This code is contributed by Ryuga
}

Python3




# Python implementation of the approach
 
# Function that returns true if the product
# of even positioned digits is equal to
# the product of odd positioned digits in n
def productEqual(n):
    if n < 10:
        return False
    prodOdd = 1; prodEven = 1
 
    # Take two consecutive digits
    # at a time
    # First digit
    while n > 0:
        digit = n % 10
        prodOdd *= digit
        n = n//10
 
        # If n becomes 0 then
        # there's no more digit
        if n == 0:
            break;
        digit = n % 10
        prodEven *= digit
        n = n//10
 
    # If the products are equal
    if prodOdd == prodEven:
        return True
 
    # If the products are not equal
    return False
 
# Driver code
n = 4324
if productEqual(n):
    print("Yes")
else:
    print("No")
 
# This code is contributed by Shrikant13

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function that returns true
// if the product of even positioned
// digits is equal to the product of
// odd positioned digits in n
static bool productEqual(int n)
{
 
    // If n is a single digit number
    if (n < 10)
        return false;
    int prodOdd = 1, prodEven = 1;
 
    while (n > 0)
    {
 
        // Take two consecutive digits
        // at a time
        // First digit
        int digit = n % 10;
        prodOdd *= digit;
        n /= 10;
 
        // If n becomes 0 then
        // there's no more digit
        if (n == 0)
            break;
 
        // Second digit
        digit = n % 10;
        prodEven *= digit;
        n /= 10;
    }
 
    // If the products are equal
    if (prodEven == prodOdd)
        return true;
 
    // If products are not equal
    return false;
}
 
// Driver code
static void Main()
{
    int n = 4324;
 
    if (productEqual(n))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by mits

PHP




<?php
// PHP implementation of the approach
 
// Function that returns true if the product
// of even positioned digits is equal to
// the product of odd positioned digits in n
function productEqual($n)
{
 
    // If n is a single digit number
    if ($n < 10)
        return false;
    $prodOdd = 1;
    $prodEven = 1;
 
    while ($n > 0)
    {
 
        // Take two consecutive digits
        // at a time
         
        // First digit
        $digit = $n % 10;
        $prodOdd *= $digit;
        $n /= 10;
 
        // If n becomes 0 then
        // there's no more digit
        if ($n == 0)
            break;
 
        // Second digit
        $digit = $n % 10;
        $prodEven *= $digit;
        $n /= 10;
    }
 
    // If the products are equal
    if ($prodEven == $prodOdd)
        return true;
 
    // If products are not equal
    return false;
}
 
// Driver code
$n = 4324;
if (productEqual(!$n))
    echo "Yes";
else
    echo "No";
 
// This code is contributed by jit_t
?>

Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function that returns true if the product
// of even positioned digits is equal to
// the product of odd positioned digits in n
function productEqual(n)
{
 
    // If n is a single digit number
    if (n < 10)
        return false;
    let prodOdd = 1, prodEven = 1;
 
    while (n > 0) {
 
        // Take two consecutive digits
        // at a time
        // First digit
        let digit = n % 10;
        prodOdd *= digit;
        n = Math.floor(n / 10);
 
        // If n becomes 0 then
        // there's no more digit
        if (n == 0)
            break;
 
        // Second digit
        digit = n % 10;
        prodEven *= digit;
        n = Math.floor(n / 10);
    }
 
    // If the products are equal
    if (prodEven == prodOdd)
        return true;
 
    // If products are not equal
    return false;
}
 
// Driver code
 
    let n = 4324;
 
    if (productEqual(n))
        document.write("Yes");
    else
        document.write("No");
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>
Output: 
No

 

Method #2: Converting Integer to String:

  1. Convert the integer to string. Traverse the string and store all even indices’ products in one variable and all odd indices’ products in another variable.
  2. If both are equal then print Yes else No

Below is the implementation:

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
void getResult(int n)
{
     
    // To store the respective product
    int proOdd = 1;
    int proEven = 1;
 
    // Converting integer to string
    string num = to_string(n);
 
    // Traversing the string
    for(int i = 0; i < num.size(); i++)
        if (i % 2 == 0)
            proOdd = proOdd * (num[i] - '0');
        else
            proEven = proEven * (num[i] - '0');
 
    if (proOdd == proEven)
        cout << "Yes";
    else
        cout << "No";
}
 
// Driver code
int main()
{
    int n = 4324;
     
    getResult(n);
     
    return 0;
}
 
// This code is contributed by sudhanshugupta2019a

Java




// Java implementation of the approach
 
import java.util.*;
 
class GFG{
 
static void getResult(int n)
{
     
    // To store the respective product
    int proOdd = 1;
    int proEven = 1;
 
    // Converting integer to String
    String num = String.valueOf(n);
 
    // Traversing the String
    for(int i = 0; i < num.length(); i++)
        if (i % 2 == 0)
            proOdd = proOdd * (num.charAt(i) - '0');
        else
            proEven = proEven * (num.charAt(i) - '0');
 
    if (proOdd == proEven)
        System.out.print("Yes");
    else
        System.out.print("No");
}
 
// Driver code
public static void main(String[] args)
{
    int n = 4324;
     
    getResult(n);
     
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 implementation of the approach
 
def getResult(n):
 
    # To store the respective product
    proOdd = 1
    proEven = 1
     
    # Converting integer to string
    num = str(n)
     
    # Traversing the string
    for i in range(len(num)):
        if(i % 2 == 0):
            proOdd = proOdd*int(num[i])
        else:
            proEven = proEven*int(num[i])
 
    if(proOdd == proEven):
        print("Yes")
    else:
        print("No")
 
 
# Driver code
if __name__ == "__main__":
    n = 4324
    getResult(n)
 
# This code is contributed by vikkycirus

C#




// C# implementation of the approach
using System;
public class GFG{
 
static void getResult(int n)
{
     
    // To store the respective product
    int proOdd = 1;
    int proEven = 1;
 
    // Converting integer to String
    String num = String.Join("",n);
 
    // Traversing the String
    for(int i = 0; i < num.Length; i++)
        if (i % 2 == 0)
            proOdd = proOdd * (num[i] - '0');
        else
            proEven = proEven * (num[i] - '0');
 
    if (proOdd == proEven)
        Console.Write("Yes");
    else
        Console.Write("No");
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 4324;
    getResult(n);
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
    // Javascript implementation of the approach
     
    function getResult(n)
    {
 
        // To store the respective product
        let proOdd = 1;
        let proEven = 1;
 
        // Converting integer to String
        let num = n.toString();
 
        // Traversing the String
        for(let i = 0; i < num.length; i++)
            if (i % 2 == 0)
                proOdd = proOdd * (num[i].charCodeAt() - '0'.charCodeAt());
            else
                proEven = proEven * (num[i].charCodeAt() - '0'.charCodeAt());
 
        if (proOdd == proEven)
            document.write("Yes");
        else
            document.write("No");
    }
     
    let n = 4324;
      
    getResult(n);
 
</script>

Output:

No

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :