Skip to content
Related Articles

Related Articles

Check if number can be displayed using seven segment led
  • Difficulty Level : Medium
  • Last Updated : 20 Aug, 2019
GeeksforGeeks - Summer Carnival Banner

Given a string str representing an integer and an integer led which is the count of LEDs available. The task is to check if it is possible to display the number using the given LEDs.
Note that a digit will be displayed as it is displayed on a 7 segment LED. If its possible to display the number then print Yes, otherwise print No.

Here’s an example of seven segment display:
Seven Segment Led

Examples:

Input: str = “999”, led = 5
Output: NO
9 takes 6 LEDs to be displayed. So 999 will require 18 LEDs
Since only 5 LEDs are available, it is not possible to display 999

Input: str = “123456789”, led = 43
Output: YES



Input: str = “123456789”, led = 20
Output: NO

Approach: Pre-compute the number of segments used by digits from 0 to 9 and store it. Now for each element of the string count the number of segments used by it. Now, if count ≤ led then print YES else print NO.

The number of segment used by digit:
0 -> 6
1 -> 2
2 -> 5
3 -> 5
4 -> 4
5 -> 5
6 -> 6
7 -> 3
8 -> 7
9 -> 6

Below is the implementation of the above approach:

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
  
// Pre-computed values of segment used by digit 0 to 9.
const int seg[10] = { 6, 2, 5, 5, 4, 5, 6, 3, 7, 6 };
  
// Check if it is possible to display the number
string LedRequired(string s, int led)
{
    int count = 0;
  
    // Finding sum of the segments used by
    // each digit of the number
    for (int i = 0; i < s.length(); ++i) {
        count += seg[int(s[i]) - 48];
    }
  
    if (count <= led)
        return "YES";
    else
        return "NO";
}
  
// Driven Program
int main()
{
    string S = "123456789";
    int led = 20;
  
    // Function call to print required answer
    cout << LedRequired(S, led) << endl;
    return 0;
}

Java




// Java implementation of the above approach 
public class GfG{
  
    // Check if it is possible to display the number 
    public static String LedRequired(String s, int led) 
    
        // Pre-computed values of segment used by digit 0 to 9. 
        int seg[] = { 6, 2, 5, 5, 4, 5, 6, 3, 7, 6 }; 
  
        int count = 0
        // Finding sum of the segments used by 
        // each digit of the number 
        for (int i = 0; i < s.length(); ++i) { 
            count += seg[(int)(s.charAt(i)) - 48]; 
        
        
        if (count <= led) 
            return "YES"
        else
            return "NO"
    
  
    public static void main(String []args){
          
        String S = "123456789"
        int led = 20
        
        // Function call to print required answer 
        System.out.println(LedRequired(S, led));
    }
}
  
// This code is contributed by Rituraj Jain

Python3




# Python3 implementation of above approach 
  
# Pre-computed values of segment 
# used by digit 0 to 9. 
seg = [ 6, 2, 5, 5, 4
        5, 6, 3, 7, 6
  
# Check if it is possible to
# display the number 
def LedRequired(s, led) : 
  
    count = 0
  
    # Finding sum of the segments used 
    # by each digit of the number 
    for i in range(len(s)) :
        count += seg[ord(s[i]) - 48]
      
    if (count <= led) :
        return "YES"
    else :
        return "NO"
  
# Driver Code
if __name__ == "__main__"
  
    S = "123456789"
    led = 20
  
    # Function call to print
    # required answer 
    print(LedRequired(S, led)) 
  
# This code is contributed by Ryuga

C#




// C# implementation of the above approach 
using System;
class GFG
{
  
// Check if it is possible to display the number 
public static String LedRequired(string s, int led) 
    // Pre-computed values of segment 
    // used by digit 0 to 9. 
    int[] seg = { 6, 2, 5, 5, 4, 5, 6, 3, 7, 6 }; 
  
    int count = 0; 
      
    // Finding sum of the segments used by 
    // each digit of the number 
    for (int i = 0; i < s.Length; ++i)
    
        count += seg[(int)(s[i]) - 48]; 
    
  
    if (count <= led) 
        return "YES"
    else
        return "NO"
  
// Driver Code
public static void Main()
{
      
    string S = "123456789"
    int led = 20; 
  
    // Function call to print required answer 
    Console.WriteLine(LedRequired(S, led));
}
}
  
// This code is contributed by Akanksha Rai

PHP




<?php
// PHP implementation of above approach
  
// Pre-computed values of segment
// used by digit 0 to 9.
$seg = array(6, 2, 5, 5, 4, 5, 6, 3, 7, 6 );
  
// Check if it is possible to display the number
function LedRequired($s, $led)
{
    $count = 0;
    global $seg;
      
    // Finding sum of the segments used by
    // each digit of the number
    for ($i = 0; $i < strlen($s) ; ++$i
    {
        $count += $seg[ord($s[$i]) - 48];
    }
  
    if ($count <= $led)
        return "YES";
    else
        return "NO";
}
  
// Driver Code
$S = "123456789";
$led = 20;
  
// Function call to print required answer
echo LedRequired($S, $led);
  
// This code is contributed by ihritik 
?>
Output:
NO

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :