Skip to content
Related Articles

Related Articles

Improve Article

Check if N rectangles of equal area can be formed from (4 * N) integers

  • Last Updated : 25 Mar, 2021

Given an integer N and an array arr[] of size 4 * N, the task is to check whether N rectangles of equal area can be formed from this array if each element can be used only once.

Examples: 

Input: arr[] = {1, 8, 2, 1, 2, 4, 4, 8}, N = 2 
Output: Yes 
Two rectangles with sides (1, 8, 1, 8) and (2, 4, 2, 4) can be formed. 
Both of these rectangles have the same area. 

Input: arr[] = {1, 3, 3, 5, 5, 7, 1, 6}, N = 2 
Output: No 

Approach:  



  • Four sides are needed to form a rectangle.
  • Given 4 * N integers, utmost N rectangles can be formed using numbers only once.
  • The task is to check if the areas of all the rectangles are same. To check this, the array is first sorted.
  • The sides are considered as the first two elements and the last two elements.
  • Area is calculated and checked if it has the same area as the initially calculated area.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check whether we can make n
// rectangles of equal area
bool checkRectangles(int* arr, int n)
{
    bool ans = true;
 
    // Sort the array
    sort(arr, arr + 4 * n);
 
    // Find the area of any one rectangle
    int area = arr[0] * arr[4 * n - 1];
 
    // Check whether we have two equal sides
    // for each rectangle and that area of
    // each rectangle formed is the same
    for (int i = 0; i < 2 * n; i = i + 2) {
        if (arr[i] != arr[i + 1]
            || arr[4 * n - i - 1] != arr[4 * n - i - 2]
            || arr[i] * arr[4 * n - i - 1] != area) {
 
            // Update the answer to false
            // if any condition fails
            ans = false;
            break;
        }
    }
 
    // If possible
    if (ans)
        return true;
 
    return false;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 8, 2, 1, 2, 4, 4, 8 };
    int n = 2;
 
    if (checkRectangles(arr, n))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to check whether we can make n
// rectangles of equal area
static boolean checkRectangles(int[] arr, int n)
{
    boolean ans = true;
 
    // Sort the array
    Arrays.sort(arr);
 
    // Find the area of any one rectangle
    int area = arr[0] * arr[4 * n - 1];
 
    // Check whether we have two equal sides
    // for each rectangle and that area of
    // each rectangle formed is the same
    for (int i = 0; i < 2 * n; i = i + 2)
    {
        if (arr[i] != arr[i + 1] ||
            arr[4 * n - i - 1] != arr[4 * n - i - 2] ||
            arr[i] * arr[4 * n - i - 1] != area)
        {
 
            // Update the answer to false
            // if any condition fails
            ans = false;
            break;
        }
    }
 
    // If possible
    if (ans)
        return true;
 
    return false;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 8, 2, 1, 2, 4, 4, 8 };
    int n = 2;
 
    if (checkRectangles(arr, n))
        System.out.print("Yes");
    else
        System.out.print("No");
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python implementation of the approach
 
# Function to check whether we can make n
# rectangles of equal area
def checkRectangles(arr, n):
    ans = True
 
    # Sort the array
    arr.sort()
 
    # Find the area of any one rectangle
    area = arr[0] * arr[4 * n - 1]
 
    # Check whether we have two equal sides
    # for each rectangle and that area of
    # each rectangle formed is the same
    for i in range(0, 2 * n, 2):
        if (arr[i] != arr[i + 1]
            or arr[4 * n - i - 1] != arr[4 * n - i - 2]
            or arr[i] * arr[4 * n - i - 1] != area):
 
            # Update the answer to false
            # if any condition fails
            ans = False
            break
 
    # If possible
    if (ans):
        return True
 
    return False
 
# Driver code
arr = [ 1, 8, 2, 1, 2, 4, 4, 8 ]
n = 2
 
if (checkRectangles(arr, n)):
    print("Yes")
else:
    print("No")
 
# This code is contributed by Sanjit_Prasad

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to check whether we can make n
// rectangles of equal area
static bool checkRectangles(int[] arr, int n)
{
    bool ans = true;
 
    // Sort the array
    Array.Sort(arr);
 
    // Find the area of any one rectangle
    int area = arr[0] * arr[4 * n - 1];
 
    // Check whether we have two equal sides
    // for each rectangle and that area of
    // each rectangle formed is the same
    for (int i = 0; i < 2 * n; i = i + 2)
    {
        if (arr[i] != arr[i + 1] ||
            arr[4 * n - i - 1] != arr[4 * n - i - 2] ||
            arr[i] * arr[4 * n - i - 1] != area)
        {
 
            // Update the answer to false
            // if any condition fails
            ans = false;
            break;
        }
    }
 
    // If possible
    if (ans)
        return true;
 
    return false;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 1, 8, 2, 1, 2, 4, 4, 8 };
    int n = 2;
 
    if (checkRectangles(arr, n))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to check whether we can make n
// rectangles of equal area
function checkRectangles(arr, n)
{
    let ans = true;
 
    // Sort the array
    arr.sort();
 
    // Find the area of any one rectangle
    var area = arr[0] * arr[4 * n - 1];
 
    // Check whether we have two equal sides
    // for each rectangle and that area of
    // each rectangle formed is the same
    for(let i = 0; i < 2 * n; i = i + 2)
    {
        if (arr[i] != arr[i + 1] ||
            arr[4 * n - i - 1] !=
            arr[4 * n - i - 2] ||
            arr[i] * arr[4 * n - i - 1] != area)
        {
             
            // Update the answer to false
            // if any condition fails
            ans = false;
            break;
        }
    }
     
    // If possible
    if (ans)
        return true;
 
    return false;
}
 
// Driver code
var arr = [ 1, 8, 2, 1, 2, 4, 4, 8 ];
var n = 2;
 
if (checkRectangles(arr, n))
    document.write("Yes");
else
    document.write("No");
 
// This code is contributed by gauravrajput1
 
</script>
Output: 
Yes

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :